PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Arctic was once lush and green, could be again, new research shows

Arctic was once lush and green, could be again, new research shows
2021-03-17
(Press-News.org) Imagine not a white, but a green Arctic, with woody shrubs as far north as the Canadian coast of the Arctic Ocean. This is what the northernmost region of North America looked like about 125,000 years ago, during the last interglacial period, finds new research from the University of Colorado Boulder.

Researchers analyzed plant DNA more than 100,000 years old retrieved from lake sediment in the Arctic (the oldest DNA in lake sediment analyzed in a publication to date) and found evidence of a shrub native to northern Canadian ecosystems 250 miles (400 km) farther north than its current range.

As the Arctic warms much faster than everywhere else on the planet in response to climate change, the findings, published this week in the Proceedings of the National Academy of Sciences, may not only be a glimpse of the past but a snapshot of our potential future.

"We have this really rare view into a particular warm period in the past that was arguably the most recent time that it was warmer than present in the Arctic. That makes it a really useful analogue for what we might expect in the future," said Sarah Crump, who conducted the work as a PhD student in geological sciences and then a postdoctoral researcher with the Institute of Arctic and Alpine Research (INSTAAR).

To gain this glimpse back in time, the researchers not only analyzed DNA samples, they first had to journey to a remote region of the Arctic by ATV and snowmobile to gather them and bring them back.

Dwarf birch is a key species of the low Arctic tundra, where slightly taller shrubs (reaching a person's knees) can grow in an otherwise cold and inhospitable environment. But dwarf birch doesn't currently survive past the southern part of Baffin Island in the Canadian Arctic. Yet researchers found DNA of this plant in the ancient lake sediment showing it used to grow much farther north.

"It's a pretty significant difference from the distribution of tundra plants today," said Crump, currently a postdoctoral fellow in the Paleogenomics Lab at the University of California Santa Cruz.

While there are many potential ecological effects of the dwarf birch creeping farther north, Crump and her colleagues examined the climate feedbacks related to these shrubs covering more of the Arctic. Many climate models don't include these kinds of changes in vegetation, yet these taller shrubs can stick out above snow in the spring and fall, making the Earth's surface dark green instead of white--causing it to absorb more heat from the sun.

"It's a temperature feedback similar to sea ice loss," said Crump.

During the last interglacial period, between 116,000 and 125,000 years ago, these plants had thousands of years to adjust and move in response to warmer temperatures. With today's rapid rate of warming, the vegetation is likely not keeping pace, but that doesn't mean it won't play an important role in impacting everything from thawing permafrost to melting glaciers and sea level rise.

"As we think about how landscapes will equilibrate to current warming, it's really important that we account for how these plant ranges are going to change," said Crump.

As the Arctic could easily see an increase of 9 degrees Fahrenheit (5 degrees Celsius) above pre-industrial levels by 2100, the same temperature it was in the last interglacial period, these findings can help us better understand how our landscapes might change as the Arctic is on track to again reach these ancient temperatures by the end of the century.

Mud as a microscope

To get the ancient DNA they wanted, the researchers couldn't look to the ocean or to the land--they had to look in a lake.

Baffin Island is located on the northeastern side of Arctic Canada, kitty-corner to Greenland, in the territory of Nunavut and the lands of the Qikiqtaani Inuit. It's the largest island in Canada and the fifth-largest island in the world, with a mountain range that runs along its northeastern edge. But these scientists were interested in a small lake, past the mountains and near the coast.

Above the Arctic Circle, the area around this lake is typical of a high Arctic tundra, with average annual temperatures below 15 °F (?9.5 °C). In this inhospitable climate, soil is thin and not much of anything grows.

But DNA stored in the lake beds below tells a much different story.

To reach this valuable resource, Crump and her fellow researchers carefully balanced on cheap inflatable boats in the summer--the only vessels light enough to carry with them--and watched out for polar bears from the lake ice in winter. They pierced the thick mud up to 30 feet (10 meters) below its surface with long, cylindrical pipes, hammering them deep into the sediment.

The goal of this precarious feat? To carefully withdraw a vertical history of ancient plant material to then travel back out with and take back to the lab.

While some of the mud was analyzed at a state-of-the-art organic geochemistry lab in the Sustainability, Energy and Environment Community (SEEC) at CU Boulder, it also needed to reach a special lab dedicated to decoding ancient DNA, at Curtin University in Perth.

To share their secrets, these mud cores had to travel halfway across the world from the Arctic to Australia.

A local snapshot

Once in the lab, the scientists had to suit up like astronauts and examine the mud in an ultra-clean space to ensure that their own DNA didn't contaminate that of any of their hard-earned samples.

It was a race against the clock.

"Your best shot is getting fresh mud," said Crump. "Once it's out of the lake, the DNA is going to start to degrade."

This is why older lake bed samples in cold storage don't quite do the trick.

While other researchers have also collected and analyzed much older DNA samples from permafrost in the Arctic (which acts like a natural freezer underground), lake sediments are kept cool, but not frozen. With fresher mud and more intact DNA, scientists can get a clearer and more detailed picture of the vegetation which once grew in that immediate area.

Reconstructing historic vegetation has most commonly been done using fossil pollen records, which preserve well in sediment. But pollen is prone to only showing the big picture, as it is easily blown about by the wind and doesn't stay in one place.

The new technique used by Crump and her colleagues allowed them to extract plant DNA directly from the sediment, sequence the DNA and infer what plant species were living there at the time. Instead of a regional picture, sedimentary DNA analysis gives researchers a local snapshot of the plant species living there at the time.

Now that they have shown it's possible to extract DNA that's over 100,000 years old, future possibilities abound.

"This tool is going to be really useful on these longer timescales," said Crump.

This research has also planted the seed to study more than just plants. In the DNA samples from their lake sediment, there are signals from a whole range of organisms that lived in and around the lake.

"We're just starting to scratch the surface of what we're able to see in these past ecosystems," said Crump. "We can see the past presence of everything from microbes to mammals, and we can start to get much broader pictures of how past ecosystems looked and how they functioned."

INFORMATION:

Additional authors on this study include Jonathan H. Raberg, Julio Sepúlveda and Gifford H. Miller at the University of Colorado Boulder; Gregory de Wet of the University of Colorado Boulder and Smith College; Sam Cutler of the University of California; Beth Shapiro of the University of California and the Howard Hughes Medical Institute; Bianca Fréchette of the Université du Québec à Montréal; Matthew Power of Curtin University; Michael Bunce of Curtin University and the New Zealand Environment Protection Authority; Martha K. Raynolds at the University of Alaska Fairbanks; Jason P. Briner and Elizabeth K. Thomas of the University at Buffalo.


[Attachments] See images for this press release:
Arctic was once lush and green, could be again, new research shows

ELSE PRESS RELEASES FROM THIS DATE:

Text me about cervical cancer

Text me about cervical cancer
2021-03-17
An estimated 14,480 new cases of invasive cervical cancer will be diagnosed in the United States this year, according to the American Cancer Society. Cases that could be prevented or cured with better education from screening to treatment based on improved provider-patient communication, says a Michigan State University researcher. The issue is particularly acute for Black women, said Sabrina Ford, an associate professor in the Department of Obstetrics, Gynecology and Reproductive Biology within MSU's College of Human Medicine. Ford's research was published ...

Mitigating impact of artificial light at night in tropical forests

Mitigating impact of  artificial light at night in tropical forests
2021-03-17
Artificial light at night (ALAN) is a major factor in global insect decline. In a paper published today in Insect Conservation and Diversity, Smithsonian Conservation Biology Institute (SCBI) scientists and partners found that using amber-colored filters to remove the blue spectra of light from "warm white" LED (light-emitting diode) lamps drastically reduces insect attraction to nocturnal lighting in a tropical forest. This is the first study to validate quantitative predictions of how lamp color affects insect attraction and provide clear recommendations to mitigate the negative impacts of ALAN on wildlife in rainforest ecosystems. "While ...

Modelling speed-ups in nutrient-seeking bacteria

2021-03-17
Many bacteria swim towards nutrients by rotating the helix-shaped flagella attached to their bodies. As they move, the cells can either 'run' in a straight line, or 'tumble' by varying the rotational directions of their flagella, causing their paths to randomly change course. Through a process named 'chemotaxis,' bacteria can decrease their rate of tumbling at higher concentrations of nutrients, while maintaining their swimming speeds. In more hospitable environments like the gut, this helps them to seek out nutrients more easily. However, in more nutrient-sparse ...

'Time lost is brain lost'

Time lost is brain lost
2021-03-17
A new study involving UCLA researchers finds that mobile stroke units (MSUs) - state-of-the-art ambulances built to provide stroke patients with emergency neurological diagnosis and treatment prior to hospital arrival -- improve patient outcomes and lessen the chance for disability by delivering care faster than standard stroke care. The UCLA Mobile Stroke Unit serves as a shared regional resource of LA County EMS Provider Agencies, taking patients to 15 different stroke center hospitals within 3 regions in Los Angeles County. The MSU carries a CT scanner that can directly image the brain and blood vessels in the field. UCLA was one of seven national mobile stroke unit programs to participate in the clinical trial, which was presented March 17 at the ...

Losing rivers

2021-03-17
Water is an ephemeral thing. It can emerge from an isolated spring, as if by magic, to birth a babbling brook. It can also course through a mighty river, seeping into the soil until all that remains downstream is a shady arroyo, the nearby trees offering the only hint of where the water has gone. The interplay between surface water and groundwater is often overlooked by those who use this vital resource due to the difficulty of studying it. Assistant professors Scott Jasechko and Debra Perrone, of UC Santa Barbara, and their colleagues leveraged their enormous ...

Aspirin use may decrease ventilation, ICU admission and death in COVID-19 patients

2021-03-17
George Washington University researchers found low dose aspirin may reduce the need for mechanical ventilation, ICU admission and in-hospital mortality in hospitalized COVID-19 patients. Final results indicating the lung protective effects of aspirin were published today in Anesthesia & Analgesia. "As we learned about the connection between blood clots and COVID-19, we knew that aspirin - used to prevent stroke and heart attack - could be important for COVID-19 patients," Jonathan Chow, MD, assistant professor of anesthesiology and critical care medicine and director of the Critical Care Anesthesiology ...

Study finds plants would grow well in solar cell greenhouses

2021-03-17
A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity. "We were a little surprised - there was no real reduction in plant growth or health," says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. "It means the idea of integrating transparent solar cells into greenhouses can be done." Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar ...

Scientists create model of an early human embryo from skin cells

Scientists create model of an early human embryo from skin cells
2021-03-17
AUSTRALIAN - LED INTERNATIONAL RESEARCH TEAM GENERATES THE FIRST MODEL OF EARLY HUMAN EMBRYOS FROM SKIN CELLS In a discovery that will revolutionize research into the causes of early miscarriage, infertility and the study of early human development - an international team of scientists led by Monash University in Melbourne, Australia has generated a model of a human embryo from skin cells. The team, led by Professor Jose Polo, has successfully reprogrammed these fibroblasts or skin cells into a 3-dimensional cellular structure that is morphologically and molecularly similar to human blastocysts. Called iBlastoids, these can be used to model the biology of ...

Racial/ethnic disparities in very preterm, preterm birth before, during COVID-19 pandemic

2021-03-17
What The Study Did: Racial and ethnic disparities in very preterm birth and preterm birth among 8,026 women were similar during the first wave of the COVID-19 pandemic in New York City compared with the same period the year prior in this observational study. Authors: Teresa Janevic, Ph.D., M.P.H., of the Icahn School of Medicine at Mount Sinai in New York, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamanetworkopen.2021.1816) Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article ...

AI method can detect precursors to cervical cancer

AI method can detect precursors to cervical cancer
2021-03-17
Using artificial intelligence and mobile digital microscopy, researchers hope to create screening tools that can detect precursors to cervical cancer in women in resource-limited settings. A study led by researchers at Karolinska Institutet in Sweden now shows that AI screenings of pap smears carried out with portable scanners were comparable to analyses done by pathologists. The results are published in the journal JAMA Network Open. "Our method enables us to more effectively discover and treat precursors to cervical cancer, especially in low-income countries, where there is a serious lack of skilled pathologists ...

LAST 30 PRESS RELEASES:

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

New evidence links gut microbiome to chronic disease outcomes

Family Heart Foundation appoints Dr. Seth Baum as Chairman of the Board of Directors

New route to ‘quantum spin liquid’ materials discovered for first time

Chang’e-6 basalts offer insights on lunar farside volcanism

Chang’e-6 lunar samples reveal 2.83-billion-year-old basalt with depleted mantle source

Zinc deficiency promotes Acinetobacter lung infection: study

How optogenetics can put the brakes on epilepsy seizures

Children exposed to antiseizure meds during pregnancy face neurodevelopmental risks, Drexel study finds

Adding immunotherapy to neoadjuvant chemoradiation may improve outcomes in esophageal cancer

Scientists transform blood into regenerative materials, paving the way for personalized, blood-based, 3D-printed implants

Maarja Öpik to take up the position of New Phytologist Editor-in-Chief from January 2025

Mountain lions coexist with outdoor recreationists by taking the night shift

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

[Press-News.org] Arctic was once lush and green, could be again, new research shows