PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Building tough 3D nanomaterials with DNA

Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods

2021-03-19
(Press-News.org) New York, NY--March 19, 2020--Columbia Engineering researchers, working with Brookhaven National Laboratory, report today that they have built designed nanoparticle-based 3D materials that can withstand a vacuum, high temperatures, high pressure, and high radiation. This new fabrication process results in robust and fully engineered nanoscale frameworks that not only can accommodate a variety of functional nanoparticle types but also can be quickly processed with conventional nanofabrication methods.

"These self-assembled nanoparticles-based materials are so resilient that they could fly in space," says Oleg Gang, professor of https://www.cheme.columbia.edu/chemical engineering and of applied physics and materials science, who led the study published today by Science Advances. "We were able to transition 3D DNA-nanoparticle architectures from liquid state--and from being a pliable material--to solid state, where silica re-enforces DNA struts. This new material fully maintains its original framework architecture of DNA-nanoparticle lattice, essentially creating a 3D inorganic replica. This allowed us to explore--for the first time--how these nanomaterials can battle harsh conditions, how they form, and what their properties are."

Material properties are different at the nanoscale and researchers have long been exploring how to use these tiny materials--1,000 to 10,000 times smaller than the thickness of a human hair--in all kinds of applications, from making sensors for phones to building faster chips for laptops. Fabrication techniques, however, have been challenging in realizing 3D nano-architectures. DNA nanotechnology enables the creation of complexly organized materials from nanoparticles through self-assembly, but given the soft and environment-dependent nature of DNA, such materials might be stable under only a narrow range of conditions. In contrast, the newly formed materials can now be used in a broad range of applications where these engineered structures are required. While conventional nanofabrication excels in creating planar structures, Gang's new method allows for fabrication of 3D nanomaterials that are becoming essential to so many electronic, optical, and energy applications.

Gang, who holds a joint appointment as group leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab's Center for Functional Nanomaterials, is at the forefront of DNA nanotechnology, which relies on folding DNA chain into desired two and three-dimensional nanostructures. These nanostructures become building blocks that can be programmed via Watson-Crick interactions to self-assemble into 3D architectures. His group designs and forms these DNA nanostructures, integrates them with nanoparticles and directs the assembly of targeted nanoparticle-based materials. And, now, with this new technique, the team can transition these materials from being soft and fragile to solid and robust.

This new study demonstrates an efficient method for converting 3D DNA-nanoparticle lattices into silica replicas, while maintaining the topology of the interparticle connections by DNA struts and the integrity of the nanoparticle organization. Silica works well because it helps retain the nanostructure of the parent DNA lattice, forms a robust cast of the underlying DNA and does not affect nanoparticles arrangements.

"The DNA in such lattices takes on the properties of silica," says Aaron Michelson, a PhD student from Gang's group. "It becomes stable in air and can be dried and allows for 3D nanoscale analysis of the material for the first time in real space. Moreover, silica provides strength and chemical stability, it's low-cost and can be modified as needed--it's a very convenient material."

To learn more about the properties of their nanostructures, the team exposed the converted to silica DNA-nanoparticles lattices to extreme conditions: high temperatures above 1,0000C and high mechanical stresses over 8GPa (about 80,000 times more than atmosphere pressure, or 80 times more than at the deepest ocean place, the Mariana trench), and studied these processes in-situ. To gauge the structures' viability for applications and further processing steps, the researchers also exposed them to high doses of radiation and focused ion beams.

"Our analysis of the applicability of these structures to couple with traditional nanofabrication techniques demonstrates a truly robust platform for generating resilient nanomaterials via DNA-based approaches for discovering their novel properties," Gang notes. "This is a big step forward, as these specific properties mean that we can use our 3D nanomaterial assembly and still access the full range of conventional materials processing steps. This integration of novel and conventional nanofabrication methods is needed to achieve advances in mechanics, electronics, plasmonics, photonics, superconductivity, and energy materials."

Collaborations based on Gang's work have already led to novel superconductivity and conversion of the silica to conductive and semiconductive media for further processing. These include an earlier study published by Nature Communications and one recently published by Nano Letters. The researchers are also planning to modify the structure to make a broad range of materials with highly desirable mechanical and optical properties.

"Computers have been made with silicon for over 40 years," Gang adds. "It took four decades to push the fabrication down to about 10 nm for planar structures and devices. Now we can make and assemble nanoobjects in a test tube in a couple of hours without expensive tools. Eight billion connections on a single lattice can now be orchestrated to self-assemble through nanoscale processes that we can engineer. Each connection could be a transistor, a sensor, or an optical emitter--each can be a bit of data stored. While Moore's law is slowing, the programmability of DNA assembly approaches is there to carry us forward for solving problems in novel materials and nanomanufacturing. While this has been extremely challenging for current methods, it is enormously important for emerging technologies."

INFORMATION:

About the Study

The study is titled "Resilient Three-Dimensional Ordered Architectures Assembled from Nanoparticles by DNA."

Authors are: Pawel W. Majewski 1,2, Aaron Michelson3, Marco A. L. Cordeiro1, Cheng Tian1, Chunli Ma1, Kim Kisslinger1, Ye Tian1, Wenyan Liu1, Eric A. Stach3, Kevin G. Yager1, Oleg Gang1, 3, 5 1Center for Functional Nanomaterials, Brookhaven National Laboratory
2Department of Chemistry, University of Warsaw, Poland
3Department of Applied Physics and Applied Mathematics, Columbia University
4Department of Materials Science and Engineering, University of Pennsylvania
5Department of Chemical Engineering, Columbia University

The study was supported by US Department of Defense, Army Research Office, W911NF-19-1-0395. This research used resources of the Center for Functional Nanomaterials and the National Synchrotron Light Source II, which are U.S. DOE Office of Science Facilities, at Brookhaven National Laboratory under Contract No. DE-SC0012704. The DNA design work was supported by the US Department of Energy, Office of Basic Energy Sciences, Grant DE-SC0008772.

The authors declare no competing interests.

LINKS: Paper: https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.abf0617
DOI: 10.1126/sciadv.abf0617 http://advances.sciencemag.org/
http://engineering.columbia.edu/
https://www.bnl.gov/world/
https://www.engineering.columbia.edu/faculty/oleg-gang
https://www.cheme.columbia.edu/
https://www.apam.columbia.edu/
https://www.bnl.gov/cfn/research/biological.php
https://www.bnl.gov/cfn/
https://www.nature.com/articles/s41467-020-19439-9
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c05023

Columbia Engineering Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.



ELSE PRESS RELEASES FROM THIS DATE:

Researchers identify immune cells that contribute to transplant rejection

Researchers identify immune cells that contribute to transplant rejection
2021-03-19
PITTSBURGH, March 19, 2021 - Non-circulating memory T cells, whose main function is to provide local protection against re-infection, contribute to chronic transplant rejection, University of Pittsburgh School of Medicine researchers reveal in a paper published today in Science Immunology. The scientists show that these "tissue-resident memory T cells" are harmful in situations where antigens that the cells recognize are present in the body for a long time, such as in cases of an organ or tissue transplant. This finding is an important step toward improving therapies to help prevent organ rejection in transplant recipients. "Tissue-resident memory T cells serve an important surveillance function," said co-senior author Martin Oberbarnscheidt, ...

Vaccination by inhalation

2021-03-19
CAMBRIDGE, MA -- Many viruses infect their hosts through mucosal surfaces such as the lining of the respiratory tract. MIT researchers have now developed a vaccination strategy that can create an army of T cells that are ready and waiting at those surfaces, offering a quicker response to viral invaders. The researchers showed that they could induce a strong memory T cell response in the lungs of mice by giving them a vaccine modified to bind to a protein naturally present in mucus. This can help ferry the vaccine across mucosal barriers, such as the lining of the lungs. "In this paper, we specifically focused on T cell responses that would be useful against viruses or cancer, and our idea was to use this protein, albumin, as sort of a Trojan horse to ...

Better batteries start with basics -- and a big computer

Better batteries start with basics -- and a big computer
2021-03-19
To understand the fundamental properties of an industrial solvent, chemists with the University of Cincinnati turned to a supercomputer. UC chemistry professor and department head Thomas Beck and UC graduate student Andrew Eisenhart ran quantum simulations to understand glycerol carbonate, a compound used in biodiesel and as a common solvent. They found that the simulation provided detail about hydrogen bonding in determining the structural and dynamic properties of the liquid that was missing from classical models. The study was published in the Journal of Physical Chemistry B. Glycerol carbonate could be a more environmentally ...

Importance of crisis standards of care for equitable allocation of scarce medical re

Importance of crisis standards of care for equitable allocation of scarce medical re
2021-03-19
During a public health crisis like the COVID-19 pandemic, U.S. hospitals need to allocate scarce medical resources in an equitable manner, according to clinicians and ethicists at the University of Miami Miller School of Medicine. "Significant concerns have been raised that crisis standards of care may be biased against certain patients based on race or ethnicity," said Hayley Gershengorn, M.D., associate professor of pulmonary and critical care medicine. "To examine that issue, we analyzed over a thousand medical records from two academic hospitals where University of Miami faculty see patients and found no disparities ...

COVID-19 transmission rare in schools with masking, distancing, contact tracing

2021-03-19
In-school COVID-19 transmission is rare - even among close school contacts of those who test positive for the virus - when schools heed public health precautions such as mandatory masking, social distancing and frequent hand-washing, according to results of a pilot study in Missouri aimed at identifying ways to keep elementary and secondary schools open and safe during the pandemic. A close contact is anyone who has been within 6 feet for more than 15 minutes in a 24-hour period with someone infected with COVID-19. The study is part of a larger, ongoing collaboration involving the Centers for Disease Control and Prevention (CDC), Washington University School of Medicine in St. Louis, ...

Solving 'barren plateaus' is the key to quantum machine learning

Solving barren plateaus is the key to quantum machine learning
2021-03-19
LOS ALAMOS, N.M., March 19, 2021--Many machine learning algorithms on quantum computers suffer from the dreaded "barren plateau" of unsolvability, where they run into dead ends on optimization problems. This challenge had been relatively unstudied--until now. Rigorous theoretical work has established theorems that guarantee whether a given machine learning algorithm will work as it scales up on larger computers. "The work solves a key problem of useability for quantum machine learning. We rigorously proved the conditions under which certain architectures of variational quantum algorithms will or will not have barren plateaus as they are scaled up," said Marco Cerezo, lead author on the paper published in Nature Communications ...

Tropical species are moving northward in U.S. as winters warm

Tropical species are moving northward in U.S. as winters warm
2021-03-19
Notwithstanding last month's cold snap in Texas and Louisiana, climate change is leading to warmer winter weather throughout the southern U.S., creating a golden opportunity for many tropical plants and animals to move north, according to a new study appearing this week in the journal Global Change Biology. Some of these species may be welcomed, such as sea turtles and the Florida manatee, which are expanding their ranges northward along the Atlantic Coast. Others, like the invasive Burmese python -- in the Florida Everglades, the largest measured 18 feet, end-to-end --maybe less so. Equally unwelcome, and among the quickest to spread into warming areas, are ...

Emphasizing urgency alone won't increase support for major climate policies, study finds

2021-03-19
In light of recent extreme climate events--from wildfires blazing through the western US to snowstorms sweeping Texas into a blackout--climate scientists and media outlets have repeatedly called out the urgency of tackling the climate crisis. But in a new study published March 19 in the journal One Earth, researchers found that emphasizing urgency alone is not enough to kindle public support for climate change policies. "We had the impression that policymakers shy away from enacting ambitious, stringent climate policy because they're afraid of ...

Strengthening water resources planning in East Africa

Strengthening water resources planning in East Africa
2021-03-19
IIASA researchers worked with local stakeholders from the East African Community to explore and co-develop regional water scenarios that can enhance understanding of the up- and downstream water sector interactions in the extended Lake Victoria Basin to facilitate rational water resource planning. East Africa is the world's fastest growing region outside of Asia, with an estimated growth of 5% and above over the last decade. Part of this success can likely be attributed to the East Africa Vision 2050, which was launched in 2015 by the Heads of States of the East African Community (EAC) - an intergovernmental organization composed of six countries in the African Great Lakes ...

Hospital surge capacity survey before COVID-19 gives insight into pandemic preparedness

Hospital surge capacity survey before COVID-19 gives insight into pandemic preparedness
2021-03-19
PITTSBURGH, March 19, 2021 - A University of Pittsburgh School of Medicine-led survey of dozens of surge capacity managers at hospitals nationwide captures the U.S. health care system's pandemic preparedness status in the months before the first COVID-19 cases were identified in China. Published today in the journal JAMA Network Open, the investigation details the strain experienced by U.S. hospitals during the 2017-18 influenza season, which was marked by severe illness and the highest infectious disease-related hospitalization rates in at least a decade. At the time, pandemic planning ...

LAST 30 PRESS RELEASES:

Is eating more red meat bad for your brain?

How does Tourette syndrome differ by sex?

Red meat consumption increases risk of dementia and cognitive decline

Study reveals how sex and racial disparities in weight loss surgery have changed over 20 years

Ultrasound-directed microbubbles could boost immune response against tumours, new Concordia research suggests

In small preliminary study, fearful pet dogs exhibited significantly different microbiomes and metabolic molecules to non-fearful dogs, suggesting the gut-brain axis might be involved in fear behavior

Examination of Large Language Model "red-teaming" defines it as a non-malicious team-effort activity to seek LLMs' limits and identifies 35 different techniques used to test them

Most microplastics in French bottled and tap water are smaller than 20 µm - fine enough to pass into blood and organs, but below the EU-recommended detection limit

A tangled web: Fossil fuel energy, plastics, and agrichemicals discourse on X/Twitter

This fast and agile robotic insect could someday aid in mechanical pollination

Researchers identify novel immune cells that may worsen asthma

Conquest of Asia and Europe by snow leopards during the last Ice Ages uncovered

Researchers make comfortable materials that generate power when worn

Study finding Xenon gas could protect against Alzheimer’s disease leads to start of clinical trial

Protein protects biological nitrogen fixation from oxidative stress

Three-quarters of medical facilities in Mariupol sustained damage during Russia’s siege of 2022

Snow leopard fossils clarify evolutionary history of species

Machine learning outperforms traditional statistical methods in addressing missing data in electronic health records

AI–guided lung ultrasound by nonexperts

Prevalence of and inequities in poor mental health across 3 US surveys

Association between surgeon stress and major surgical complications

How cryogenic microscopy could help strengthen food security

DNA damage can last unrepaired for years, changing our view of mutations

Could this fundamental discovery revolutionise fertiliser use in farming?

How one brain circuit encodes memories of both places and events

ASU-led collaboration receives $11.2 million to build a Southwest Regional Direct Air Capture Hub

Study finds strategies to minimize acne recurrence after taking medication for severe acne

Deep learning designs proteins against deadly snake venom

A new geometric machine learning method promises to accelerate precision drug development

Ancient genomes reveal an Iron Age society centred on women

[Press-News.org] Building tough 3D nanomaterials with DNA
Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods