(Press-News.org) PHILADELPHIA -- (April 1, 2021 -- Scientists at The Wistar Institute identified a new mechanism of transcriptional control of cellular senescence that drives the release of inflammatory molecules that influence tumor development through altering the surrounding microenvironment. The study, published in Nature Cell Biology, reports that methyltransferase-like 3 (METTL3) and 14 (METTL14) proteins moonlight as transcriptional regulators that allow for establishment of the senescence-associated secretory phenotype (SASP).
Cellular senescence is a stable state of growth arrest in which cells stop dividing but remain viable and produce an array of inflammatory and growth-promoting molecules collectively defined as SASP. These molecules account for the complex crosstalk between senescent cells and neighboring cells and the effect of cellular senescence in various physiological processes and diseases. Although senescence is regarded as a potent barrier for tumor development, the SASP plays a stage-dependent role during tumor development, mediating the clearance of premalignant lesions during initiation and promoting the growth of established tumors.
"Senescent cells undergo widespread changes in gene expression needed to adapt their phenotype and functions," said Rugang Zhang, Ph.D., deputy director of The Wistar Institute Cancer Center, Christopher M. Davis Professor and leader of the Immunology, Microenvironment & Metastasis Program. "We pointed out a new mechanism that allows cells to turn on a set of genes encoding for the SASP molecules and may potentially be targeted to inhibit this aspect of senescence while preserving its antitumor function."
Zhang, who is senior author on the study, and his team focused on METTL3 and METTL14, proteins known for chemically modifying messenger RNA to regulate its function. They found a new role of these proteins in senescence and regulation of gene expression that is independent of their RNA-modifying function.
Depleting cells of METTL3 and METTL14, researchers observed reduced expression of SASP genes, such as inflammatory cytokines, but no effect on cell cycle arrest or other markers of senescence, indicating that decrease in SASP is not an indirect consequence of overall senescence inhibition.
"Our results indicate that METTL3 and METTL14 promote expression of SASP genes, in accordance with other studies that revealed an oncogenic role for these two proteins," said Pingyu Liu, Ph.D., first author of the study and a staff scientist in the Zhang Lab.
The team further analyzed the association of METTL3 and METTL14 with DNA, comparing senescent and control cells. While the two proteins are found together on DNA in control cells, in senescent cells they have different distribution patterns, whereby METTL3 tends to sit upstream of SASP genes, near the transcription start site, while METTL14 binds away from gene bodies, on regulatory elements called enhancers.
Researchers demonstrated that through this positioning pattern and interacting with each other, METTL3 and METTL14 bring closer together two DNA sequences that in non-senescent cells are distant, allowing the formation of promoter-enhancer chromatin loops. As a consequence, expression of the SASP genes is turned on.
"Although we focused on senescence, we envision that the transcription-regulating function of METTL3 and METTL14 may be involved in many other biological processes beyond our current study," concluded Zhang.
INFORMATION:
Co-authors: Jianhuang Lin, Takeshi Fukumoto, Timothy Nacarelli, Xue Hao, and Andrew V. Kossenkov from The Wistar Institute; Fuming Li and M. Celeste Simon from University of Pennsylvania.
Work supported by: National Institutes of Health (NIH) grants R01CA160331, R01CA163377, R01CA202919, R01CA239128, R01CA243142, P01AG031862 to R.Z., P50CA228991, and R50CA211199; U.S. Department of Defense grants OC180109 and OC190181. Additional support was provided by The Honorable Tina Brozman Foundation for Ovarian Cancer Research and The Tina Brozman Ovarian Cancer Research Consortium 2.0; and Ovarian Cancer Research Alliance (Collaborative Research Development Grant #596552 and Ann and Sol Schreiber Mentored Investigator Award #649658). Core support for The Wistar Institute was provided by the Cancer Center Support Grant P30CA010815.
Publication information: m6A-independent genome-wide METTL3 and METTL14 redistribution drives senescence-associated secretory phenotype, Nature Cell Biology, 2021. Online publication.
The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.
The University of Maryland (UMD) has collaborated with Cornell University and Stanford University to quantify the man-made effects of climate change on global agricultural productivity growth for the first time. In a new study published in Nature Climate Change, researchers developed a robust model of weather effects on productivity, looking at productivity in both the presence and absence of climate change. Results indicate a 21% reduction in global agricultural productivity since 1961, which according to researchers is equivalent to completely losing the last 7 years ...
ITHACA, N.Y. - Despite important agricultural advancements to feed the world in the last 60 years, a Cornell-led study shows that global farming productivity is 21% lower than it could have been without climate change. This is the equivalent of losing about seven years of farm productivity increases since the 1960s.
The future potential impacts of climate change on global crop production has been quantified in many scientific reports, but the historic influence of anthropogenic climate change on the agricultural sector had yet to be modeled.
Now, a new study provides these insights: "Anthropogenic Climate Change Has Slowed Global Agricultural Productivity ...
Many wildlife species are threatened by shrinking habitat. But according to new research, the potential range of African elephants could be more than five times larger than its current extent.
Due to 2,000 years of human pressure, African elephants have suffered dramatic population declines, and their range has shrunk to just 17% of what it could be, say researchers who led the new study, in Current Biology.
The dramatic reduction in range is due to the killing of elephants for their ivory and the encroachment of humans into elephant habitat. Evidence for elephants being ...
Children hospitalized with breathing problems due to a common viral lung infection are likely to get sicker and remain hospitalized if they have high levels of defective copies of the virus, according to a new study by researchers at Washington University School of Medicine in St. Louis.
The findings, published April 1 in Nature Microbiology, could help doctors identify those patients at high risk of severe illness due to respiratory syncytial virus (RSV), the most common cause of pneumonia and bronchiolitis (inflammation of the small airways) in children under age 5.
"Every ...
What The Study Did: This observational study examined death and hospital readmission rates of patients with COVID-19 pneumonia after being discharged to home or quarantine housing with supplemental home oxygen.
Authors: Brad Spellberg, M.D., of the Los Angeles County + University of Southern California Medical Center in Los Angeles, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.3990)
Editor's Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...
What The Study Did: Researchers assessed changes in the number of views of articles published in three leading medical journals since the start of the COVID-19 pandemic.
Authors: Andrew J. Giustini, M.D., Ph.D., of the Stanford University School of Medicine in Stanford, California, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.6459)
Editor's Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict ...
What The Study Did: Nationally representative data were used to look at whether systolic and diastolic blood pressure levels among children and adolescents in the United States have changed during the past 20 years.
Authors: Shakia T. Hardy, Ph.D., of the University of Alabama at Birmingham, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.3917)
Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the ...
BOSTON - New research reveals that when breast cancer cells spread to the brain, they must boost production of fatty acids, the building blocks of fat, in order to survive there. The work, which is published in Nature Cancer and was led by investigators at Massachusetts General Hospital (MGH) and the Koch Institute of the Massachusetts Institute of Technology (MIT), points to a potential new treatment target for shrinking brain tumors that arise secondary to breast cancer.
Therapies that target the human epidermal growth factor receptor 2 (HER2) have transformed treatment ...
PHILADELPHIA - A Penn Medicine patient with a genetic form of childhood blindness gained vision, which lasted more than a year, after receiving a single injection of an experimental RNA therapy into the eye. The clinical trial was conducted by researchers at the Scheie Eye Institute in the Perelman School of Medicine at the University of Pennsylvania. Results of the case, detailed in a paper published today in Nature Medicine, show that the treatment led to marked changes at the fovea, the most important locus of human central vision.
The treatment was designed for patients diagnosed with Leber congenital amaurosis (LCA) -- an eye disorder that primarily affects the retina -- who have a CEP290 mutation, which is one of the more commonly implicated genes in patients with the ...
What The Article Says: This JAMA Insights Clinical Update from the CDC's COVID-19 Response Team discusses the association of changes in COVID-19 case rates and death rates with implementation of state-issued mask mandates and allowance of any on-premises restaurant dining.
Authors: Gery P. Guy Jr, Ph.D., M.P.H., of the Centers for Disease Control and Prevention in Atlanta, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jama.2021.5455)
Editor's Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding ...