PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

"Nuclear speckle" structures inside cells enhance gene activity, may help block cancers

Study shows that tumor-suppressor protein p53 brings speckles and DNA together to boost gene expression

2021-04-05
(Press-News.org) PHILADELPHIA - A team led by scientists at the Perelman School of Medicine at the University of Pennsylvania has illuminated the functions of mysterious structures in cells called "nuclear speckles," showing that they can work in partnership with a key protein to enhance the activities of specific sets of genes.

The discovery, which will be published on April 5 in Molecular Cell, is an advance in basic cell biology; the key protein it identifies as a working partner of speckles is best known as major tumor-suppressor protein, p53. This avenue of research may also lead to a better future understanding of cancers, and possibly better cancer treatments.

"This study shows that nuclear speckles work as major regulators of gene expression, and suggests that they have a role in some cancers," said study senior author Shelley Berger, PhD, the Daniel S. Och University Professor in the Department of Cell and Developmental Biology.

Nuclear speckles, tiny structures within the nucleus of every mammalian cell, were first observed with a microscope in 1910, but in the ensuing 111 years, scientists have discovered little about their functions.

One early theory was that the speckles are essentially storage depots, since they do contain important molecules needed to copy out the DNA in genes into RNA transcripts and then to process those transcripts into the finished "messenger RNAs" that can be translated into proteins. In recent years, scientists have begun to find evidence that speckles play a more direct role in gene transcription. Nevertheless, identifying their precise functions and how those are regulated has been difficult, due to the basic challenges of studying speckles.

In the study, Berger and colleagues, including first author Katherine Alexander, PhD, a postdoctoral researcher in the Berger Laboratory who did most of the experiments, overcame some of these challenges to reveal that speckles work with p53 to directly enhance the activity of certain genes.

While p53 has long been known as a "transcription factor" or master switch that controls the activity of a broad set of genes, the researchers showed that it exerts this effect on a subset of its target genes via nuclear speckles. The protein acts as a matchmaker, bringing together speckles and DNA containing these target genes. When the speckles and genes get close, the level of transcription of the genes jumps significantly.

The researchers went even further to show that the p53 target genes whose activity is boosted via speckles have a set of functions that are broadly distinct from those of other p53 target genes.

"Speckle-associated p53 target genes, compared to other p53 target genes, are more likely to be involved in tumor-suppressing functions such as stopping cell growth and triggering cell suicide," Alexander said.

These findings not only confirm nuclear speckles as enhancers of gene activity, but also implicate them in the functions of a key tumor-suppressor protein, which is known to be disrupted in about half of all cancers. In some cancers, p53 is mutated in a way that causes it not only to lose its tumor-suppressor function but also to actively drive cancerous growth. The researchers are now working to determine if nuclear speckles are involved in mediating this cancer-driving effect of mutant p53.

"If that proves to be the case," Berger said, "then in principle we could develop treatments to interfere with this association between p53 and speckles--an association that might turn out to be a real Achilles heel for cancer."

INFORMATION:

Funding for the research was provided by the National Institutes of Health (R01CA078831, F32CA221010, U01DK127405, 4DN U01 HL129998).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $8.9 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $496 million awarded in the 2020 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center--which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report--Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nation's first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others. Penn Medicine is powered by a talented and dedicated workforce of more than 44,000 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2020, Penn Medicine provided more than $563 million to benefit our community.



ELSE PRESS RELEASES FROM THIS DATE:

Nearly 40,000 kids who lost a parent to COVID-19 need immediate support

2021-04-05
UNIVERSITY PARK, Pa. -- Approximately 40,000 children in the United States may have lost a parent to COVID-19 since February 2020, according to a statistical model created by a team of researchers. The researchers anticipate that without immediate interventions, the trauma from losing a parent could cast a shadow of mental health and economic problems well into the future for this vulnerable population. In the researchers' model, for approximately every 13th COVID-related death, a child loses one parent. Children who lose a parent are at higher risk of a range ...

Study finds psychiatric disorders persist 15 years after youth are detained

2021-04-05
CHICAGO - A new study shows that youth arrested as juveniles with psychiatric disorders that remain untreated, struggle with mental health and successful outcomes well beyond adolescence. Research from Northwestern Medicine shows nearly two-thirds of males and more than one-third of females with one or more existing psychiatric disorders when they entered detention, still had a disorder 15 years later. The findings are significant because mental health struggles add to the existing racial, ethnic and economic disparities as well as academic challenges from missed school, making a successful transition to adulthood harder to attain. "Kids get into trouble during adolescence.Those from wealthier families also use drugs and get into fights. But these situations are most often ...

Estimated number of children affected by death of parent from COVID-19

2021-04-05
What The Study Did: Researchers estimated and projected the number of children in the United States affected by the death of a parent from COVID-19. Authors: Rachel Kidman, Ph.D., of Stony Brook University in Stony Brook, New York, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamapediatrics.2021.0161) Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support. INFORMATION: Media advisory: The full study is linked to this news release. Embed this link to provide your readers ...

CRISPR-SNP-chip enables amplification-free electronic detection of single point mutations

2021-04-05
CLAREMONT, CA - Keck Graduate Institute (KGI) Assistant Professor and University of California, Berkeley Visiting Scientist Dr. Kiana Aran first introduced the CRISPR-Chip technology in 2019. Now just two years later, she has expanded on its application to develop CRISPR-SNP-Chip, which enables detection of single point mutations without amplification in Sickle Cell Disease and Amyotrophic lateral sclerosis (ALS). "The field of CRISPR-based diagnostics is rapidly evolving due to CRISPR programmability and ease of use," Aran says. "However, the majority of CRISPR-based diagnostics platforms are still relying on target amplifications or optical detections. The reprogrammability of CRISPR combined with optics-free highly scalable graphene transistors will allow us to bring the ...

A new, positive approach could be the key to next-generation, transparent electronics

A new, positive approach could be the key to next-generation, transparent electronics
2021-04-05
A new study, out this week, could pave the way to revolutionary, transparent electronics. Such see-through devices could potentially be integrated in glass, in flexible displays and in smart contact lenses, bringing to life futuristic devices that seem like the product of science fiction. For several decades, researchers have sought a new class of electronics based on semiconducting oxides, whose optical transparency could enable these fully-transparent electronics. Oxide-based devices could also find use in power electronics and communication technology, reducing the carbon footprint of our utility networks. A RMIT-led team has now introduced ultrathin beta-tellurite to the two-dimensional (2D) semiconducting material family, providing ...

Lightning strikes will more than double in Arctic as climate warms

2021-04-05
Irvine, Calif. -- In 2019, the National Weather Service in Alaska reported spotting the first-known lightning strikes within 300 miles of the North Pole. Lightning strikes are almost unheard of above the Arctic Circle, but scientists led by researchers at the University of California, Irvine have published new research in the journal Nature Climate Change detailing how Arctic lightning strikes stand to increase by about 100 percent over northern lands by the end of the century as the climate continues warming. "We projected how lightning in high-latitude boreal forests and Arctic ...

International team identifies genetic link between face and brain shape

2021-04-05
An interdisciplinary team led by KU Leuven and Stanford has identified 76 overlapping genetic locations that shape both our face and our brain. What the researchers didn't find is evidence that this genetic overlap also predicts someone's behavioural-cognitive traits or risk of conditions such as Alzheimer's disease. This means that the findings help to debunk several persistent pseudoscientific claims about what our face reveals about us. There were already indications of a genetic link between the shape of our face and that of our brain, says Professor Peter Claes from the Laboratory for Imaging Genetics at KU Leuven, who is the joint senior author of the study with Professor Joanna Wysocka from the ...

DNA methylation from bacteria & mircobiome using nanopore technology discovered

DNA methylation from bacteria & mircobiome using nanopore technology discovered
2021-04-05
Journal Name: Nature Methods Title of the Article: Discovering multiple types of DNA methylation from individual bacteria and microbiome using nanopore sequencing Corresponding Author: Gang Fang, PhD Bottom Line: Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. An increasing number of studies have reported that bacterial DNA methylation has important roles affecting clinically relevant phenotypes such as virulence, host colonization, sporulation, biofilm formation, among others. Bacterial methylomes contain three ...

Predicting critical illness among patients hospitalized with COVID-19

2021-04-05
What The Study Did: A clinical risk assessment tool developed in China was tested with a group of patients in Spain to evaluate its ability to predict critical illness among patients hospitalized with COVID-19 in Europe. Authors: Oscar Moreno-Perez, M.D., Ph.D., of the Alicante General University Hospital-Alicante Institute of Sanitary and Biomedical Research in Alicante, Spain, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamainternmed.2021.0491) Editor's Note: The article includes conflicts of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and ...

Incidence of blood clots in adults tested for SARS-CoV-2

2021-04-05
What The Study Did: The 30-day incidence of outpatient and hospital-associated blood clots following SARS-CoV-2 testing among adults in a large health system was examined in this study. Authors: Nareg H. Roubinian, M.D., of Kaiser Permanente Northern California in Oakland, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamainternmed.2021.0488) Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, ...

LAST 30 PRESS RELEASES:

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

New evidence links gut microbiome to chronic disease outcomes

Family Heart Foundation appoints Dr. Seth Baum as Chairman of the Board of Directors

New route to ‘quantum spin liquid’ materials discovered for first time

Chang’e-6 basalts offer insights on lunar farside volcanism

Chang’e-6 lunar samples reveal 2.83-billion-year-old basalt with depleted mantle source

Zinc deficiency promotes Acinetobacter lung infection: study

How optogenetics can put the brakes on epilepsy seizures

Children exposed to antiseizure meds during pregnancy face neurodevelopmental risks, Drexel study finds

Adding immunotherapy to neoadjuvant chemoradiation may improve outcomes in esophageal cancer

Scientists transform blood into regenerative materials, paving the way for personalized, blood-based, 3D-printed implants

Maarja Öpik to take up the position of New Phytologist Editor-in-Chief from January 2025

Mountain lions coexist with outdoor recreationists by taking the night shift

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

[Press-News.org] "Nuclear speckle" structures inside cells enhance gene activity, may help block cancers
Study shows that tumor-suppressor protein p53 brings speckles and DNA together to boost gene expression