PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Virginia Tech and UVA virologists develop broadly protective coronavirus vaccines

Virginia Tech and UVA virologists develop broadly protective coronavirus vaccines
2021-04-16
(Press-News.org) A candidate vaccine that could provide protection against the COVID-19 virus and other coronaviruses has shown promising results in early animal testing.

The candidate coronavirus vaccines, created by Virginia Tech's University Distinguished Professor X.J. Meng and UVA Health's Professor Steven L. Zeichner, prevented pigs from being becoming ill with a pig coronavirus, porcine epidemic diarrhea virus (PEDV).

The researchers have recently published their findings in the Proceedings of the National Academy of Sciences.

"The candidate vaccine was developed using an innovative vaccine platform targeting a highly conserved genomic region of coronaviruses," said Meng, a University Distinguished Professor in the Department of Biomedical Sciences and Pathobiology in the Virginia-Maryland College of Veterinary Medicine. "The new vaccine platform utilizes a genome-reduced bacteria to express the coronavirus vaccine antigen on its surface. Such a vaccine platform can be manufactured with low cost in existing facilities around the world, which could meet the pandemic demand." Their coronavirus vaccine offers several advantages that could overcome major obstacles to global vaccination efforts. It would be easy to store and transport, even in remote areas of the world, and could be produced in mass quantities using existing vaccine-manufacturing factories.

"Our new platform offers a new route to rapidly produce vaccines at very low cost that can be manufactured in existing facilities around the world, which should be particularly helpful for pandemic response," said Zeichner.

A new vaccine-development approach

The new vaccine-production platform involves synthesizing DNA that directs the production of a piece of the virus that can instruct the immune system how to mount a protective immune response against a virus.

That DNA is inserted into another small circle of DNA called a plasmid that can reproduce within bacteria. The plasmid is then introduced into bacteria, instructing the bacteria to place pieces of proteins on their surfaces. The technique uses the common bacteria E. coli.

One major innovation is that the E. coli have had a large number of its genes deleted. Removing many of the bacteria's genes, including genes that make up part of its exterior surface or outer membrane, appears to substantially increase the ability of the immune system to recognize and respond to the vaccine antigen placed on the surface of the bacteria. To produce the vaccine, the bacteria expressing the vaccine antigen are simply grown in a fermenter, much like the fermenters used in common microbial industrial processes like brewing, and then killed with a low concentration of formalin.

"Killed whole-cell vaccines are currently in widespread use to protect against deadly diseases like cholera and pertussis. Factories in many low-to-middle-income countries around the world are making hundreds of millions of doses of those vaccines per year now, for a $1 per dose or less," Zeichner said. "It may be possible to adapt those factories to make this new vaccine. Since the technology is very similar, the cost should be similar too."

The entire process, from identifying a potential vaccine target to producing the gene-deleted bacteria that have the vaccine antigens on their surfaces, can take place very quickly, in only two to three weeks, making the platform ideal for responding to a pandemic.

Targeting COVID-19

The team's candidate vaccines take an unusual approach in that it targets a part of the spike protein of the virus, the "viral fusion peptide," that is highly universal among coronaviruses. The fusion peptide has not been observed to differ at all in the many genetic sequences of SARS-CoV-2, the virus that causes COVID-19, that have been obtained from thousands of patients around the world during the course of the pandemic.

"With the emergence of various SARS-CoV-2 variants, a vaccine targeting a conserved region of all coronaviruses, such as the fusion peptide, may potentially lead to a broadly protective candidate vaccine. Such a vaccine, if successful, would be of significant value against variant virus strains," said Meng, who is also the founding director of the Center for Emerging, Zoonotic, and Arthropod-borne Pathogens in the Fralin Life Sciences Institute at Virginia Tech.

To create their vaccine, the researchers used the new vaccine platform, synthesizing the DNA with the instructions to make the fusion peptide and engineered bacteria to place the proteins on the surface of the bacteria that had a large number of its genes removed, then grew and inactivated the bacteria to make the candidate coronavirus vaccine.

Meng and Zeichner made two vaccines, one designed to protect against COVID-19, and another designed to protect against the pig coronavirus, PEDV. PEDV and SARS-CoV-2, the virus that causes COVID-19, are both coronaviruses, but they are distant relatives. PEDV and SARS-CoV-2, like all coronaviruses, share a number of core amino acids that constitute the fusion peptide. PEDV infects pigs, causing diarrhea, vomiting, and high fever and has been a large burden on pig farmers around the world. When PEDV first appeared in pig herds in the U.S. in 2013, it killed millions of pigs in the United States alone.

One advantage of studying PEDV in pigs is the researchers could study the ability of the vaccines to offer protection against a coronavirus infection in its native host -- in this case, pigs. The other models that have been used to test COVID-19 vaccines study SARS-CoV-2 in nonnative hosts, such as monkeys or hamsters, or in mice that have been genetically engineered to enable them to be infected with SARS-CoV-2. Pigs are also very similar in physiology and immunology to people - they may be the closest animal models to people other than primates.

In some unexpected results, Meng and Zeichner observed that both the candidate vaccine against PEDV and the candidate vaccine against SARS-CoV-2 protected the pigs against illness caused by PEDV. The vaccines did not prevent infection, but they protected the pigs from developing severe symptoms, much like the observations made when primates were tested with candidate COVID-19 vaccines. The vaccines also primed the immune system of the pigs to mount a much more vigorous immune response to the infection. If both the PEDV and the COVID-19 vaccines protected the pigs against disease caused by PEDV and primed the immune system to fight the disease, it is reasonable to think that the COVID-19 vaccine would also protect people against severe COVID-19 disease.

Next steps

Additional testing - including human trials - would be required before the COVID-19 vaccine could be approved by the federal Food and Drug Administration or other regulatory agencies around the world for use in people, but the collaborators are pleased by the early successes of the vaccine-development platform.

"Although the initial results in the animal study are promising, more work is needed to refine both the vaccine platform using different genome-reduced bacterial strains and the fusion peptide vaccine target," said Meng. "It will also be important to test the fusion peptide vaccine in a monkey model against SARS-CoV-2 infection."

Zeichner added that he was encouraged that a collaboration between UVA and Virginia Tech, schools with a well-known sports rivalry, has produced such promising results.

"If UVA and Virginia Tech scientists can work together to try to do something positive to address the pandemic, then maybe there is some hope for collaboration and cooperation in the country at large," said Zeichner.

INFORMATION:

The research team at Virginia Tech and UVA

The research team consisted of Denicar Lina Nascimento Fabris Maeda, Hanna Yu, Nakul Dar, Vignesh Rajasekaran, Sarah Meng, and Steven L. Zeichner from UVA Health; and Debin Tian, Hassan Mahsoub, Harini Sooryanarain, Bo Wang, C. Lynn Heffron, Anna Hassebroek, Tanya LeRoith, and Xiang-Jin Meng from the Virginia-Maryland College of Veterinary Medicine at Virginia Tech.

Zeichner is the McClemore Birdsong Professor in the departments of Pediatrics and Microbiology, Immunology, and Cancer Biology; the director of the Pendleton Pediatric Infectious Disease Laboratory; and part of UVA Children's Child Health Research Center. Meng is a University Distinguished Professor and director of the Virginia Tech Center for Emerging, Zoonotic, and Arthropod-borne Pathogens and a member of Virginia Tech's Department of Biomedical Sciences and Pathobiology.

Their vaccine-development work was supported by the Pendleton Pediatric Infectious Disease Laboratory, the McClemore Birdsong endowed chair and by support from the University of Virginia Manning Fund for COVID-19 Research and from the Ivy Foundation. The work was also partially supported by the Virginia-Maryland College of Veterinary Medicine and Virginia Tech internal funds.


[Attachments] See images for this press release:
Virginia Tech and UVA virologists develop broadly protective coronavirus vaccines

ELSE PRESS RELEASES FROM THIS DATE:

Study identifies new targets in the angiogenesis process

Study identifies new targets in the angiogenesis process
2021-04-16
Angiogenesis is a process of new vessel formation that is activated both in physiological (tissue repair, reproduction, etc.) and pathological (myocardial infarction, diabetic retinopathy, cancer, etc.) conditions. The process is carried out by endothelial cells and includes their proliferation, migration and arrangement in tubes. Angiogenesis regulation is precise and is mainly mediated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which in turn promote different signalling pathways leading to an increase of intracellular Ca2+ concentrations. The researchers from the Cardiovascular Pathophysiology group at the Institute ...

A new drought monitoring approach: Vector Projection Analysis (VPA)

A new drought monitoring approach: Vector Projection Analysis (VPA)
2021-04-16
A team of researchers, affiliated with UNIST has proposed a satellite-aided drought monitoring method that can adequately represent the complex drought conditions into a single integrated drought index. The newly-proposed drought index has attracted considerable attention as a new method for monitoring and forecasting drought hazards due to its accuracy with no space-time constraints. Drought is one of the most complex natural disasters. Therefore, unlike most other natural disasters, it is usually difficult to define the drought onset or drought declaration. For this reason, various drought indices (i.e., drought severity, the area affected, duration, and timing) are used to monitor drought and its risk management. The existing drought indices are tended to be specific to particular ...

Sunlight to solve the world's clean water crisis

Sunlight to solve the worlds clean water crisis
2021-04-16
Researchers at UniSA have developed a cost-effective technique that could deliver safe drinking water to millions of vulnerable people using cheap, sustainable materials and sunlight. Less than 3 per cent of the world's water is fresh, and due to the pressures of climate change, pollution, and shifting population patterns, in many areas this already scarce resource is becoming scarcer. Currently, 1.42 billion people - including 450 million children - live in areas of high, or extremely high, water vulnerability, and that figure is expected to grow in coming decades. Researchers at UniSA's Future Industries Institute have developed a promising new process that could eliminate water stress for millions of people, including those living in many of the planet's most vulnerable ...

New radiotracer safe and effective for imaging early rheumatoid arthritis

New radiotracer safe and effective for imaging early rheumatoid arthritis
2021-04-16
Reston, VA--New research shows that a novel positron emission tomography (PET) tracer that targets inflammation is safe and can clearly identify early stages of rheumatoid arthritis. The promising PET tracer, 68Ga-DOTA-Siglec-9, rapidly clears from blood circulation, has a low radiation dose, and can be easily produced. This first-in-human study was published in the April issue of the Journal of Nuclear Medicine. Inflammation is a significant part of several chronic diseases, including rheumatoid arthritis and its related issues. While PET imaging with 18F-FDG is a valuable tool for the diagnosis and monitoring of the effects of treatments, it is not specific enough to assess inflammation. "It's important to detect inflammation early so that patients ...

Patients of women doctors more likely to be vaccinated against the flu

2021-04-16
New UCLA research suggests that elderly patients of female physicians are more likely than those of male physicians in the same outpatient practice to be vaccinated against the flu. This trend holds for all racial and ethnic groups studied and could provide insight into improving vaccination rates for influenza, COVID-19 and other illnesses, according to the research letter, which is published in the peer-reviewed JAMA Internal Medicine. Prior studies have shown that female physicians tend to spend more time with their patients, said study author Dr. Dan Ly, an assistant professor in the division of general internal medicine and health services research at the David ...

Tiny cat-sized stegosaur leaves its mark

Tiny cat-sized stegosaur leaves its mark
2021-04-16
A single footprint left by a cat-sized dinosaur around 100 million years ago has been discovered in China by an international team of palaeontologists. University of Queensland researcher Dr Anthony Romilio was part of the team that investigated the track, originally found by Associate Professor Lida Xing from the China University of Geosciences (Beijing). "This footprint was made by a herbivorous, armoured dinosaur known broadly as a stegosaur - the family of dinosaurs that includes the famed stegosaurus," Dr Romilio said. "Like the stegosaurus, this little dinosaur probably had spikes on its tail and ...

Rural-urban divide compounds racial disparities in COVID-19 deaths, study finds

2021-04-16
While Black, Hispanic, Latino, Indigenous, Asian and Pacific Islander people are more likely to die of COVID-19 than white people nationwide, a recent study from Oregon State University found the risk was even greater for racial and ethnic minority groups living in rural areas compared with urban areas. To address the disparities, researchers say the health care response to COVID-19, including the vaccine rollout, needs to allocate additional resources to rural areas that have been hardest hit, especially those where minority populations are concentrated. Earlier studies throughout the U.S. have shown that ...

Oregon scientists create mechanism to precisely control soundwaves in metamaterials

2021-04-16
EUGENE, Ore. -- April 16, 2021 -- University of Oregon physicists have developed a new method to manipulate sound -- stop it, reverse it, store it and even use it later -- in synthetic composite structures known as metamaterials. The discovery was made using theoretical and computational analysis of the mechanical vibrations of thin elastic plates, which serve as the building blocks for the proposed design. The physicists, Pragalv Karki and Jayson Paulose, also developed a simpler minimal model consisting of springs and masses demonstrating the same signal manipulation ability. "There have been a lot of mechanisms that can guide or block the transmission of sound waves through a metamaterial, but our design is the first to dynamically stop and reverse a sound pulse," said Karki, ...

Coronavirus does not infect the brain but still inflicts damage

2021-04-16
NEW YORK, NY (April 16, 2021)--SARS-CoV-2, the virus that causes COVID-19, likely does not directly infect the brain but can still inflict significant neurological damage, according to a new study from neuropathologists, neurologists, and neuroradiologists at Columbia University Vagelos College of Physicians and Surgeons. "There's been considerable debate about whether this virus infects the brain, but we were unable to find any signs of virus inside brain cells of more than 40 COVID-19 patients," says James E. Goldman, MD, PhD, professor of pathology & cell biology (in psychiatry), who led the ...

CNIO researchers explain the toxicity of USP7 inhibitors, under development for cancer treatment

CNIO researchers explain the toxicity of USP7 inhibitors, under development for cancer treatment
2021-04-16
Understanding the components that control cell division is fundamental to understanding how life works and how alterations in this delicate process can cause diseases such as cancer. It was precisely the discoveries of "key regulators of the cell cycle" and their implications for processes such as cancer, that won the British scientists R. Timothy Hunt and Paul M. Nurse and the American scientist Leland H. Hartwell the 2001 Nobel Prize in Physiology or Medicine. A study led by Óscar Fernández-Capetillo, Head of the Genomic Instability Group at the Spanish National Cancer Research Centre (CNIO) and published this week in The EMBO Journal uncovers a new cell cycle control element, the USP7 protein. It acts as a brake to prevent cells ...

LAST 30 PRESS RELEASES:

Department of Energy announces $179 million for Microelectronics Science Research Centers

Human-related activities continue to threaten global climate and productivity

Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued

Unraveling the power and influence of language

Gene editing tool reduces Alzheimer’s plaque precursor in mice

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility

Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity

Association of state cannabis legalization with cannabis use disorder and cannabis poisoning

Gestational hypertension, preeclampsia, and eclampsia and future neurological disorders

Adoption of “hospital-at-home” programs remains concentrated among larger, urban, not-for-profit and academic hospitals

Unlocking the mysteries of the human gut

High-quality nanodiamonds for bioimaging and quantum sensing applications

New clinical practice guideline on the process for diagnosing Alzheimer’s disease or a related form of cognitive impairment or dementia

Evolution of fast-growing fish-eating herring in the Baltic Sea

Cryptographic protocol enables secure data sharing in the floating wind energy sector

Can drinking coffee or tea help prevent head and neck cancer?

Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration

Scientists unlock secrets behind flowering of the king of fruits

[Press-News.org] Virginia Tech and UVA virologists develop broadly protective coronavirus vaccines