Why the human body has not evolved to make childbirth easier -- or has it?
2021-04-22
(Press-News.org) AUSTIN, Texas -- Despite advances in medicine and technology, childbirth isn't likely to get much easier on women from a biological perspective.
Engineers at The University of Texas at Austin and University of Vienna revealed in new research a series of evolutionary trade-offs that have created a near-perfect balance between supporting childbirth and keeping organs intact on a day-to-day basis. Human reproduction is unique because of the comparatively tight fit between the birth canal and baby's head, and it is likely to stay that way because of these competing biological imperatives.
The size of the pelvic floor and canal is key to keeping this balance. These opposing duties have constrained the ability of the pelvic floor to evolve over time to make childbirth easier because doing that would sacrifice the ability to protect organs.
"Although this dimension has made childbirth more difficult, we have evolved to a point where the pelvic floor and canal can balance supporting internal organs while also facilitating childbirth and making it as easy as possible," said Krishna Kumar, an assistant professor in the Cockrell School of Engineering's Department of Civil, Architectural and Environmental Engineering who led the research published this week in the journal Proceedings of the National Academy of Sciences.
The pelvic floor in women is a band of muscles that stretches across the bottom of the abdomen from the tailbone to the pubic bone. It supports pelvic organs, including the uterus, bladder and bowel, and it helps stabilize the spine.
A larger pelvic floor and canal would facilitate easier childbirth. But the larger it becomes without additional bones or tissue to support it, the more likely it is to deform under the weight of organs and cause them to fall downward.
These trade-offs, referred to as the pelvic floor hypothesis, were known in the scientific community. But the theory had been difficult to test until this research team used engineering tools to investigate it.
Kumar first started thinking about the problem by comparing the pelvic floor to a trampoline. A bigger trampoline will drop further as weight is applied, whereas a smaller trampoline will hold its structure better.
In addition to studying the size of the pelvic floor, the researchers also looked at thickness. In theory, a thicker pelvic floor could continue to support organs and an expanded size for childbirth. But it did not turn out that way.
"We found that thicker pelvic floors would require quite a bit higher intra-abdominal pressures than humans are capable of generating to stretch during childbirth," said Nicole Grunstra, an affiliated researcher at the University of Vienna's Unit for Theoretical Biology in the Department of Evolutionary Biology. "Being unable to push the baby through a resistant pelvic floor would equally complicate childbirth, despite the extra space available in the birth canal, and so pelvic floor thickness appears to be another evolutionary 'compromise,' in addition to the size of the birth canal."
The team got to this conclusion by applying principles common in civil engineering. Kumar used a Finite Element analysis, a computerized model often deployed to test the design of structures to see whether they will break or wear down when facing high levels of pressure and stress. In this case, Finite Element analysis allowed the team to model the pelvic floor, change its parameters and see how it responds to the stresses of childbirth and protecting organs, which is otherwise impossible to test using clinical data.
This is the first time Finite Element analysis has been used to explore an evolutionary question. However, it isn't the first time Kumar has applied engineering tools to biology.
While at the University of Cambridge in the U.K., where he met his co-authors who are now at the University of Vienna, Kumar applied a transportation analysis technique to herpes to learn more about how it first spread among humans.
This collaboration shows that engineering approaches and tools are relevant to important problems that, at first glance, may seem well outside the discipline, said Kumar, whose primary research involves numerical models for earthquakes, landslides and other disasters.
"You can abstract all the biology away, and it comes down to what happens if you apply stress, what does it do to bodies and structures with different material properties," Kumar said. "If you squint your eyes, a large landslide can look like a pelvic floor."
INFORMATION:
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-04-22
Not all cancerous tumors are created equal. Some tumors, known as "hot" tumors, show signs of inflammation, which means they are infiltrated with T cells working to fight the cancer. Those tumors are easier to treat, as immunotherapy drugs can then amp up the immune response.
"Cold" tumors, on the other hand, have no T-cell infiltration, which means the immune system is not stepping in to help. With these tumors, immunotherapy is of little use.
It's the latter type of tumor that researchers Michael Knitz and radiation oncologist and University of Colorado Cancer Center member Sana Karam, MD, PhD, address in new research published this week in the Journal for ImmunoTherapy of Cancer. Working with mouse models in Karam's specialty area of head and neck cancers, Knitz and ...
2021-04-22
PROVIDENCE, R.I. [Brown University] -- As NASA's Perseverance rover begins its search for ancient life on the surface of Mars, a new study suggests that the Martian subsurface might be a good place to look for possible present-day life on the Red Planet.
The study, published in the journal Astrobiology, looked at the chemical composition of Martian meteorites -- rocks blasted off of the surface of Mars that eventually landed on Earth. The analysis determined that those rocks, if in consistent contact with water, would produce the chemical energy needed to support microbial communities similar to those that survive in the unlit depths of the Earth. Because these meteorites may be representative ...
2021-04-22
The unprecedented development of COVID-19 vaccines less than a year after discovery of this virus was enabled by more than $17 billion of research on vaccine technologies funded by the NIH prior to the pandemic, according to new research from Bentley University's Center for Integration of Science and Industry. The article, titled "NIH funding for vaccine readiness before the COVID-19 pandemic," demonstrates the critical role this broad foundation of government-funded research plays in ensuring vaccine readiness.
The report, published today in the journal Vaccine, ...
2021-04-22
DALLAS - April 22, 2021 - Being Black or Hispanic, living in high-poverty neighborhoods, and having Medicaid or no insurance coverage are associated with higher mortality in men and women under 40 with cancer, a review by UT Southwestern Medical Center researchers found.
"Survival is not different because of biology. It's not different because of patient-level factors," says Caitlin Murphy, Ph.D., lead author of the study and an assistant professor of population and data sciences and internal medicine at UT Southwestern. "No matter which way we looked at the data, we still saw consistent and alarming differences in survival by race - and these are teens and young adults."
Other findings based on an ...
2021-04-22
Machine learning could provide up an extra hour of warning time for debris flows along the Illgraben torrent in Switzerland, researchers report at the Seismological Society of America (SSA)'s 2021 Annual Meeting.
Debris flows are mixtures of water, sediment and rock that move rapidly down steep hills, triggered by heavy precipitation and often containing tens of thousands of cubic meters of material. Their destructive potential makes it important to have monitoring and warning systems in place to protect nearby people and infrastructure.
In her presentation at SSA, Ma?gorzata Chmiel of ETH Zürich described a machine learning approach to detecting and alerting against debris flows for the Illgraben torrent, a site in the European Alps that experiences significant debris flows and torrential ...
2021-04-22
It seems like a smooth slab of stainless steel, but look a little closer, and you'll see a simplified cross-section of the Los Angeles sedimentary basin.
Caltech researcher Sunyoung Park and her colleagues are printing 3D models like the metal Los Angeles proxy to provide a novel platform for seismic experiments. By printing a model that replicates a basin's edge or the rise and fall of a topographic feature and directing laser light at it, Park can simulate and record how seismic waves might pass through the real Earth.
In her presentation at the Seismological Society of America (SSA)'s 2021 Annual Meeting, Park explained why these physical models can address some of the drawbacks of numerical modeling of ground motion in some cases.
Small-scale, complex structures in ...
2021-04-22
Days after the 4 August 2020 massive explosion at the port of Beirut in Lebanon, researchers were on the ground mapping the impacts of the explosion in the port and surrounding city.
The goal was to document and preserve data on structural and façade damage before rebuilding, said University of California, Los Angeles civil and environmental engineer Jonathan Stewart, who spoke about the effort at the Seismological Society of America (SSA)'s 2021 Annual Meeting.
The effort also provided an opportunity to compare NASA Jet Propulsion Laboratory satellite surveys of the blast effects with data collected from the ground surveys. Stewart and his colleagues concluded that satellite-based Damage Proxy Maps were effective at identifying severely damaged buildings and undamaged ...
2021-04-22
Research has identified critical factors that enable dangerous bacteria to spread disease by surviving on surfaces in hospitals and kitchens.
The study into the mechanisms which enable the opportunistic human pathogen Pseudomonas aeruginosa to survive on surfaces, could lead to new ways of targeting harmful bacteria.
To survive outside their host, pathogenic bacteria must withstand various environmental stresses. One mechanism is the sugar molecule, trehalose, which is associated with a range of external stresses, particularly osmotic shock - sudden changes to the salt concentration surrounding cells.
Researchers ...
2021-04-22
EUGENE, Ore. -- April 22, 2021 -- Product marketers should be clear in their messaging to avoid customer skepticism that makes them feel duped, according to University of Oregon research.
At issue in a new study, published in the Journal of Business Research, was a social-cognitive construct called theory of mind, which considers how well people assess the mental states and apparent goals of others.
Developmental psychologists link it to an ability to show empathy. In business, the study, led by former UO doctoral student Elizabeth Minton, showed it also can influence a person's recognition of being persuaded. And that affects a person's evaluation and willingness to buy a product, she found.
"There has been some research on adult theory of mind, particularly in understanding ...
2021-04-22
Severity of illness, history of stroke, and being divorced or widowed were independently predictive of delirium in hospitalized patients in Zambia, according to a study published in PLOS ONE.
A collaborative team of researchers from Vanderbilt University Medical Center and the University of Zambia Teaching Hospital published the risk factors as a follow-up look at the prevalence and impact of delirium, a form of acute brain dysfunction, in lower-resourced hospitals. Findings published in February showed delirium is widespread in patients admitted to the University Teaching Hospital, and the duration of delirium predicted both mortality and disability at six months after discharge.
The studies represent ...
LAST 30 PRESS RELEASES:
[Press-News.org] Why the human body has not evolved to make childbirth easier -- or has it?