Exposure to high heat neutralizes SARS-CoV-2 in less than one second
Texas A&M research shows exposure to high temperatures can neutralize the virus, preventing it from infecting another human host
2021-04-27
(Press-News.org) Arum Han, professor in the Department of Electrical and Computer Engineering at Texas A&M University, and his collaborators have designed an experimental system that shows exposure of SARS-CoV-2 to a very high temperature, even if applied for less than a second, can be sufficient to neutralize the virus so that it can no longer infect another human host.
Applying heat to neutralize COVID-19 has been demonstrated before, but in previous studies temperatures were applied from anywhere from one to 20 minutes. This length of time is not a practical solution, as applying heat for a long period of time is both difficult and costly. Han and his team have now demonstrated that heat treatment for less than a second completely inactivates the coronavirus -- providing a possible solution to mitigating the ongoing spread of COVID-19, particularly through long-range airborne transmission.
The Medistar Corporation approached leadership and researchers from the College of Engineering in the spring of 2020 to collaborate and explore the possibility of applying heat for a short amount of time to kill COVID-19. Soon after, Han and his team got to work, and built a system to investigate the feasibility of such a procedure.
Their process works by heating one section of a stainless-steel tube, through which the coronavirus-containing solution is run, to a high temperature and then cooling the section immediately afterward. This experimental setup allows the coronavirus running through the tube to be heated only for a very short period of time. Through this rapid thermal process, the team found the virus to be completely neutralized in a significantly shorter time than previously thought possible. Their initial results were released within two months of proof-of-concept experiments.
Han said if the solution is heated to nearly 72 degrees Celsius for about half a second, it can reduce the virus titer, or quantity of the virus in the solution, by 100,000 times which is sufficient to neutralize the virus and prevent transmission.
"The potential impact is huge," Han said. "I was curious of how high of temperatures we can apply in how short of a time frame and to see whether we can indeed heat-inactivate the coronavirus with only a very short time. And, whether such a temperature-based coronavirus neutralization strategy would work or not from a practical standpoint. The biggest driver was, 'Can we do something that can mitigate the situation with the coronavirus?'"
Their research was featured on the cover of the May issue of the journal Biotechnology and Bioengineering.
Not only is this sub-second heat treatment a more efficient and practical solution to stopping the spread of COVID-19 through the air, but it also allows for the implementation of this method in existing systems, such as heating, ventilation and air conditioning systems.
It also can lead to potential applications with other viruses, such as the influenza virus, that are also spread through the air. Han and his collaborators expect that this heat-inactivation method can be broadly applied and have a true global impact.
"Influenza is less dangerous but still proves deadly each year, so if this can lead to the development of an air purification system, that would be a huge deal, not just with the coronavirus, but for other airborne viruses in general," Han said.
In their future work, the investigators will build a microfluidic-scale testing chip that will allow them to heat-treat viruses for much shorter periods of time, for example, tens of milliseconds, with the hope of identifying a temperature that will allow the virus to be inactivated even with such a short exposure time.
INFORMATION:
The lead authors of the work are electrical engineering postdoctoral researchers, Yuqian Jiang and Han Zhang. Other collaborators on this project are Professor Julian L. Leibowitz, and Associate Professor Paul de Figueiredo from the College of Medicine; biomedical postdoctoral researcher Jose A. Wippold; Jyotsana Gupta, associate research scientist in microbial pathogenesis and immunology; and Jing Dai, electrical engineering assistant research scientist.
This work has been supported by grants from Medistar Corporation. Several research personnel on the project team were also supported by grants from the National Institutes of Health's National Institute of Allergy and Infectious Diseases.
YouTube video link: https://youtu.be/noke1baewDs
YouTube video caption: Sub-second heat treatment of coronavirus
Video credit: Texas A&M University College of Engineering
Journal link: https://onlinelibrary.wiley.com/toc/10970290/2021/118/5
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-04-27
The Marcellus Formation straddles the New York State and Pennsylvania border, a region that shares similar geography and population demographics. However, on one side of the state line unconventional natural gas development - or fracking - is banned, while on the other side it represents a multi-billion dollar industry. New research takes advantage of this 'natural experiment' to examine the health impacts of fracking and found that people who live in areas with a high concentration of wells are at higher risk for heart attacks.
"Fracking is associated ...
2021-04-27
OAK BROOK, Ill. - Exercise appears to reduce the long-term risk of bronchiectasis, a potentially serious disease of the airways, according to a study published in the journal Radiology.
Bronchiectasis is characterized by repeated cycles of inflammation and exacerbations that damage the airways, leaving them enlarged, scarred and less effective at clearing mucus. This creates an environment ripe for infections. Risk increases with age and the presence of underlying conditions like cystic fibrosis. There is no cure.
Computed tomography (CT) is used to confirm or rule out the disease in patients with symptoms like shortness of breath ...
2021-04-27
Remdesivir is currently the only antiviral drug approved in the U.S. for treating COVID-19 patients. In a paper published this week in Cell Reports, researchers from The University of Texas at Austin, Rensselaer Polytechnic Institute (RPI) and the Icahn School of Medicine at Mount Sinai showed that four drugs used to treat hepatitis C render remdesivir 10 times better at inhibiting the coronavirus in cell cultures.
These results indicate that a mixture containing remdesivir and a repurposed hepatitis C virus (HCV) drug could potentially function as a combination antiviral therapy for SARS-CoV-2. Such an antiviral could provide an immediate treatment for unvaccinated people who become infected and for vaccinated people whose immunity has waned.
Because these hepatitis drugs are already ...
2021-04-27
CHAMPAIGN, Ill. -- People up to age 40 living in economically depressed municipalities in the Greater Santiago, Chile, metropolitan area were three times more likely to die as a result of the infection than their counterparts in wealthier areas, researchers report in the journal Science. People ages 41-80 in low socioeconomic-status municipalities also suffered more from the pandemic than their peers in more affluent areas, the team found.
The study used new methods to analyze COVID-19 death counts, reported cases, testing rates and delays in testing results across location, time ...
2021-04-27
Cryopreservation, or the long-term storage of biomaterials at ultralow temperatures, has been used across cell types and species. However, until now, the practical cryopreservation of the fruit fly (Drosophila melanogaster) -- which is crucial to genetics research and critical to scientific breakthroughs benefiting human health -- has not been available.
"To keep alive the ever-increasing number of fruit flies with unique genotypes that aid in these breakthroughs, some 160,000 different flies, laboratories and stock centers engage in the costly and frequent transfer of adults to fresh food, risking contamination and genetic drift," said Li Zhan, a postdoctoral associate with the University of Minnesota College of Science and Engineering and the Center for Advanced ...
2021-04-27
In collaboration with researchers at the Vrije Universiteit Brussel, a University of Maryland (UMD) postdoctoral researcher recently co-published a large-scale study examining the genetic diversity of mangroves over more than 1,800 miles of coastline in the Western Indian Ocean, including Eastern Africa and several islands. While the mangroves of Asia, Australia, and the Americas have been more extensively studied, little work has been done classifying and highlighting genetic diversity in African mangrove populations for conservation. Similar to other wetlands, mangrove ...
2021-04-27
New research finds that children who were breastfed scored higher on neurocognitive tests. Researchers in the Del Monte Institute for Neuroscience at the University of Rochester Medical Center (URMC) analyzed thousands of cognitive tests taken by nine and ten-year-olds whose mothers reported they were breastfed, and compared those results to scores of children who were not.
"Our findings suggest that any amount of breastfeeding has a positive cognitive impact, even after just a few months." Daniel Adan Lopez, Ph.D. candidate in the Epidemiology program who is first author on the study recently ...
2021-04-27
A team of scientists has found that women's football was common across Japan between the Meiji restoration and the start of the Second World War. In the process, they also uncovered the oldest known photograph of women playing football in Japan, from 1916.
The history of men's football in Japan is well documented. In particular, the introduction of association football into Japan in the late 19th and 20th centuries has been extensively investigated. The same degree of attention had not been paid to women's football.
A team of researchers from six institutions, including Associate Professor Yoshihiro ...
2021-04-27
AMHERST Mass. - Scientists have long sought to invent materials that can respond to the external world in predictable, self-regulating ways. Now, new research conducted at the University of Massachusetts Amherst and appearing in the Proceedings of the National Academy of Sciences brings us one step closer to that goal. For their inspiration, the scientists looked to nature.
Lampreys swimming, horses walking, and insects flying: each of these behaviors is made possible by a network of oscillators--mechanisms that produce a repetitive motion, such as wriggling a tail, taking a stride, or flapping a wing. What's more, these natural oscillators can respond to their environment in predictable ways. In ...
2021-04-27
Much as yeast serves in bakeries as single-celled helper, the bacterium Escherischia coli is a must in every biotechnology lab. A team led by Prof. Dr. Barbara Di Ventura, professor of biological signaling research at the University of Freiburg, has developed a new so-called optogenetic tool that simplifies a standard method in biotechnology: Instead of feeding the bacteria with sugar as commonly done, the researchers can now simply shine light on them. Di Ventura, Prof. Dr. Mustafa Hani Khammash from ETH Zurich/Switzerland and their teams, foremost first authors Edoardo Romano and Dr. Armin Baumschlager, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Exposure to high heat neutralizes SARS-CoV-2 in less than one second
Texas A&M research shows exposure to high temperatures can neutralize the virus, preventing it from infecting another human host