Implantable piezoelectric polymer improves controlled release of drugs
Repeated tests showed a similar amount of drug release per activation, confirming robust control of release rate
2021-05-24
(Press-News.org) A membrane made from threads of a polymer commonly used in vascular sutures can be loaded with therapeutic drugs and implanted in the body, where mechanical forces activate the polymer's electric potential and slowly release the drugs.
The novel system, developed by a group led by bioengineers at UC Riverside and published in ACS Applied Bio Materials, overcomes the biggest limitations of conventional drug administration and some controlled release methods, and could improve treatment of cancer and other chronic diseases.
The drawbacks of conventional drug administration include repeated administration, nonspecific biodistribution in the body's systems, the long-term unsustainability of drug molecules, and high cytotoxicity, posing a challenge for the efficient treatment of chronic diseases that require varying drug dosages over time for optimal therapeutic efficacy. Most controlled release methods encapsulate drug particles in biodegradable, bubble-like containers that dissolve over time to release the drug, making it difficult to deliver drugs on a schedule. Others involve a battery-powered device that is not biocompatible.
Jin Nam, an associate professor of bioengineering in UC Riverside's Marlan and Rosemary Bourns College of Engineering, runs a lab that works with biocompatible polymers to build frameworks known as scaffolds that help stem cells repair tissues and organs. One of these polymers, poly(vinylidene fluoride-trifluro-ethylene), or P(VDF-TrFE), can produce an electrical charge under mechanical stress. Nam realized this property, known as piezoelectricity, made the polymer a potentially viable candidate for a drug release system.
His team used a technique called electrospinning to produce P(VDF-TrFE) nanofibers layered in a thin mat. Structuring the material in nanoscale by electrospinning optimized the sensitivity of the resulting nanofibers so the drug delivery system would respond to physiologically safe magnitudes of force while remaining insensitive to daily activities. The large surface area of the nanofibers allowed them to adsorb a relatively large quantity of drug molecules.
After embedding the film in a hydrogel that mimics living tissue, a series of tests using therapeutic shockwaves generated enough electric charge to release an electrostatically attached model drug molecule into the surrounding gel. The researchers could tune the drug release quantity by varying the applied pressure and duration.
"This piezoelectric nanofiber-based drug delivery system enables localized delivery of drug molecules on demand, which would be useful for diseases or conditions that require long-term, repeated drug administration, such as cancer treatments," Nam said. "The large surface area-to-volume ratio of nanofibrous structure enables a greater drug loading, leading to a single injection or implantation that lasts longer than conventional drug delivery."
Compared to traditional drug delivery systems based on degradation or diffusion release that typically show an initial burst release followed by different rates of release, the linear profile of drug release from the piezoelectric-based system allows for the precise administration of drug molecules regardless of implantation duration. Repeated on-demand drug release tests showed a similar amount of drug release per activation, confirming the robust control of release rate.
The sensitivity of the drug release kinetics can be tuned by controlling the nanofiber size to a range that is activated by therapeutic shockwaves, often used for musculoskeletal pain treatment with a handheld device. Smaller, more sensitive nanofiber sizes can be utilized for implantation in deep tissues, such as near a bone under muscles, while less sensitive larger nanofibers could find use in subcutaneous applications to avoid false activation by accidental impact.
INFORMATION:
Nam was joined in the research by Tanvi Jariwala, Gerardo Ico, Youyi Tai, Honghyun Park, and Nosang V. Myung. The paper, "Mechano-responsive piezoelectric nanofiber as an on-demand drug delivery vehicle," is available here.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-24
For the first time, researchers have observed plasma jets interacting with magnetic fields in a massive galaxy cluster 600 million light years away, thanks to the help of radio telescopes and supercomputer simulations. The findings, published in the journal Nature, can help clarify how such galaxy clusters evolve.
Galaxy clusters can contain up to thousands of galaxies bound together by gravity. Abell 3376 is a huge cluster forming as a result of a violent collision between two sub-clusters of galaxies. Very little is known about the magnetic fields that exist within this and similar galaxy clusters.
"It is generally difficult to directly examine the structure of intracluster magnetic fields," says Nagoya University astrophysicist ...
2021-05-24
DALLAS, May 24, 2021 -- Having a stroke or a transient ischemic attack (TIA), sometimes called a "mini-stroke," increases the risk for a stroke in the future. Identifying the cause of the stroke or TIA can lead to specific prevention strategies to reduce the risk of additional strokes, according to an updated guideline from the American Heart Association/American Stroke Association. The guideline is published today in Stroke, a journal of the American Stroke Association, a division of the American Heart Association.
Ischemic strokes account for 87% of strokes in the United States. An ischemic stroke occurs when blood flow in a vessel leading to the brain is blocked, by either clots or plaques. ...
2021-05-24
CRISPR technology allows researchers to edit genomes by altering DNA sequences and by thus modifying gene function. Its many potential applications include correcting genetic defects, treating and preventing the spread of diseases and improving crops.
Genome editing tools, such as the CRISPR-Cas9 technology, can be engineered to make extremely well-defined alterations to the intended target on a chromosome where a particular gene or functional element is located. However, one potential complication is that CRISPR editing may lead to other, unintended, genomic changes. These are known as off-target activity. ...
2021-05-24
While many might consider a walk in the woods to be a quiet, peaceful escape from their noisy urban life, we often don't consider just how incredibly noisy some natural environments can be. Although we use soothing natural sounds in our daily lives - to relax or for meditation - the thunder of a mountain river or the crash of pounding surf have likely been changing how animals communicate and where they live for eons. A new experimental study published in the journal Nature Communications finds that birds and bats often avoid habitat swamped with loud whitewater river noise.
Dr. Dylan Gomes, a recent PhD graduate of Boise State University ...
2021-05-24
For centuries, pelagic Sargassum, floating brown seaweed, have grown in low nutrient waters of the North Atlantic Ocean, supported by natural nutrient sources like excretions from fishes and invertebrates, upwelling and nitrogen fixation. Using a unique historical baseline from the 1980s and comparing it to samples collected since 2010, researchers from Florida Atlantic University's Harbor Branch Oceanographic Institute and collaborators have discovered dramatic changes in the chemistry and composition of Sargassum, transforming this vibrant living organism into a toxic "dead zone."
Their findings, published in Nature Communications, suggest that increased nitrogen availability from natural and anthropogenic sources, including sewage, is supporting blooms of ...
2021-05-24
Despite a daunting more than 130 million cases of SARS-CoV-2 infections to date worldwide, another global pathogen - the Aedes mosquito-borne dengue virus - saw a record number of over 400 million cases in 2019. But vaccine development has been challenging due to the need to protect equally against all four dengue strains. The discovery of new possible biomarkers to predict clinical and immune responses to dengue virus infection, published today in Nature Communication, could be critical to informing future vaccines.
As with SARS-CoV-2 infection, the effects of dengue virus infection can range from asymptomatic ...
2021-05-24
LEBANON, NH - By 2030, pancreatic ductal adenocarcinoma (PDAC), the most lethal form of pancreatic cancer, is projected to become the second leading cause of cancer-related deaths in the United States. Not only are therapeutic options limited, but nearly half of all PDAC patients who have their tumors removed surgically experience disease recurrence within a year, despite receiving additional chemotherapy. For more advanced stages, only about one-third of patients have a limited response to approved chemotherapy.
A team of researchers led by Dartmouth and Dartmouth-Hitchcock's Norris ...
2021-05-24
Within the European Union alone, about three million people are affected by an autism spectrum disorder (ASD). Some are only mildly affected and can live independent lives. Others have severe disabilities. What the different forms have in common is difficulty with social interaction and communication, as well as repetitive-stereotypic behaviors. Mutations in a few hundred genes are associated with ASD. One of them is called Cullin 3, and it is a high-risk gene: A mutation of this gene almost certainly leads to a disorder. But how exactly does this gene affect the brain? To learn more about it, Jasmin Morandell and Lena Schwarz, PhD students at Professor Gaia Novarino's research group, ...
2021-05-24
SILVER SPRING, Md.--People who are successful at weight-loss maintenance spend less time sitting during the week and weekends compared to weight-stable individuals with obesity, according to a paper published online in Obesity, The Obesity Society's flagship journal. This is the first study to examine time spent in various sitting activities among weight-loss maintainers.
Prior findings from 2006 in the National Weight Control Registry indicated that weight-loss maintainers watched significantly less television than controls, but other sitting activities were not examined. In the current study, weight-loss maintainers did not significantly differ from controls in reported weekly sitting time ...
2021-05-24
SILVER SPRING, Md.-- Multi-factorial metabolic and inflammatory abnormalities in obesity, independently or in combination, seems to be the critical biological link of obesity, cancer and racial/gender health disparities. However, the specific cross-talk between these factors remain elusive. Because of the extraordinary relevance in understanding the relationship between obesity-associated inflammation and comorbidities with cancer development, progression and intervention, three new papers emphasizing different aspects of the obesity and cancer connection can be found in the latest online issue of Obesity, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Implantable piezoelectric polymer improves controlled release of drugs
Repeated tests showed a similar amount of drug release per activation, confirming robust control of release rate