(Press-News.org) Pancreatic cancer is an aggressive disease in which malignant cells form in the tissues of the pancreas, a long and flat gland located behind the stomach that helps with digestion and blood sugar regulation. Because pancreatic cancer is difficult to detect early, it is associated with a low survival rate, accounting for just over 3% of all new cancer cases in the U.S., but leading to nearly 8% of all cancer deaths, according to the National Cancer Institute.
Through a pre-clinical study conducted in his former role at Moffitt Cancer Center and published in Clinical Cancer Research, Said Sebti, Ph.D., associate director for basic research at VCU Massey Cancer Center, identified a novel drug that effectively thwarts pancreatic tumors that are addicted to the cancer-causing mutant KRAS gene. Sebti recently met with clinical colleagues at Massey to discuss evaluating the drug in clinical trials in patients whose pancreatic tumors harbor mutant KRAS.
"We discovered a link between hyperactivation of the CDK protein and mutant KRAS addiction, and we exploited this link preclinically to counter mutant KRAS-driven pancreatic cancer, warranting clinical investigation in patients afflicted with this deadly disease," said Sebti, who is also the Lacy Family Chair in Cancer Research at Massey and a professor of pharmacology and toxicology at the VCU School of Medicine. "Our findings are highly significant as they revealed a new avenue to combat an aggressive form of pancreatic cancer with very poor prognosis due mainly to its resistance to conventional therapies."
KRAS is mutated in 90 percent of pancreatic cancers. Previous research from the Sebti lab and other labs has demonstrated that some tumors that harbor mutant KRAS are actually addicted to the mutant gene, meaning they cannot survive or grow without it. Sebti set out to discover if there is a drug that can specifically kill tumors that are addicted to mutant KRAS.
Sebti and collaborators used three scientific approaches to try and answer this question.
First, they mapped out the blueprint of pancreatic cancer cells through global phosphoproteomics, which gave them a snapshot of how the addicted and non-addicted tumors differ at the phosphoprotein level. They found two proteins -- CDK1 and CDK2 -- which were indicative of which cells were addicted to mutant KRAS.
Additionally, they analyzed a comprehensive database from the Broad Institute of MIT and Harvard that contains genome-wide CRISPR gRNA screening datasets. They found that CDK1 and CDK2 as well as CDK7 and CDK9 proteins were associated with mutant KRAS-addicted tumors.
Lastly, they evaluated the ability of a library of 294 FDA drugs to selectively kill mutant KRAS-addicted cancer cells over non-KRAS-addicted cancer cells in the lab and determined the most effective drug in preclinical experiments was AT7519, an inhibitor of CDK1, CDK2, CDK7 and CDK9.
"Using three entirely different approaches, the same conclusion presented itself clearly to us: pancreatic cancer patients whose tumors are addicted to mutant KRAS could benefit greatly from treatment with the CDK inhibitor AT7519," Sebti said.
To further validate these findings in fresh patient-derived tumors from pancreatic cancer patients, Sebti collaborated on this study with Jose Trevino, M.D., surgeon-in-chief and the Walter Lawrence, Jr., Distinguished Professorship in Oncology at Massey who was at the University of Florida at the time. They found that AT7519 suppressed the growth of xenograft cells from five mutant KRAS pancreatic cancer patients who relapsed on chemotherapy and/or radiation therapies.
AT7519 has previously been tested unsuccessfully in a number of clinical trials, but none of the trials targeted pancreatic cancer.
"If our findings are correct and translate in humans, then we should be able to see a positive response in pancreatic cancer patients whose tumors are addicted to mutant KRAS," Sebti said.
The study authors believe that, in addition to pancreatic cancer, these findings may also have clinical implications for colorectal and non-small cell lung cancer patients where mutations in KRAS are prevalent.
INFORMATION:
Sebti also collaborated on this study with Aslamuzzaman Kazi, Ph.D., Bin Fang, Ph.D., Eric Welsh, Ph.D., Francisca Beato, Hua Yang, Ph.D., Jason Fleming, M.D., John Koomen, Ph.D., Kazim Husain, Ph.D., Liwei Chen, Ph.D., Mokenge Molafa, M.D., Rajanikanth Vangipurapu, Ph.D., and Shengyan Xiang, Ph.D., of Moffitt Cancer Center; Terence Williams, M.D., Ph.D., of City of Hope National Medical Center; and Patrick Underwood, M.D., of the University of Florida.
Analyzing how people move about in their daily lives has long been important to urban planners, traffic engineers, and others developing new infrastructure projects.
But amid the social restrictions and quarantine policies imposed during the global spread of COVID-19--which is directly linked to the movement of people--human mobility patterns changed dramatically.
To understand just how COVID-19 affected human movement on a global scale, Shouraseni Sen Roy, a professor in the College of Arts and Sciences Department of Geography and Sustainable Development, and graduate student Christopher Chapin developed COVID-19 vs. Human Mobility, an innovative and interactive web application that, shared in a new ...
In polymicrogyria, the cortex of the brain has many irregular, small folds (gyria) and disorganization of its layers. Many affected children have severe developmental delay, intellectual disabilities, and epilepsy, and many need to use a wheelchair. Mutations in several different genes can cause this "overfolding of the brain" condition.
Studying four patients with polymicrogyria, Richard Smith, PhD, identified mutations in a gene that caused him to do a double-take. His curiosity drove him to investigate the role of this gene, called ATP1A3, in the developing brain.
"ATP1A3 is critical to many cell biological processes," says Smith, an investigator the Division of Genetics and Genomics at Boston Children's Hospital. ...
Those who deactivated their Facebook profiles report a lower regard for other ethnic groups, and this effect was more prevalent among people living in more ethnically homogenous areas, shows a new study of users in Bosnia and Herzegovina (BiH). The findings run counter to a commonly held view that social media usage exacerbates societal polarization.
The work, conducted by researchers at New York University's Center for Social Media and Politics (CSMaP), appears in the Proceedings of the National Academy of Sciences (PNAS).
"For all our attention to the online drivers of polarization, we should not forget about the importance of offline factors as well," ...
MISSOULA - Following 2020's extreme fire season, high-elevation forests in the central Rocky Mountains now are burning more than at any point in the past 2,000 years, according to a new University of Montana study set to publish in the Proceedings of the National Academy of Sciences.
Researchers from UM and the University of Wyoming analyzed a unique network of fire-history records to understand how 21st-century fire activity compares to wildfires in the past. The findings highlight that burning in recent decades in high-elevation forests of northern Colorado and southern Wyoming is unprecedented over the past several millennia.
As fire paleoecologists - scientists who study historical ecosystems - the team uses charcoal found in lake sediments to piece together the fire ...
PULLMAN, Wash. - You can take a fish out of toxic water, but its epigenetic mutations will remain for at least two generations.
A research team led by Washington State University scientists analyzed the epigenetics--molecular factors and processes that determine whether genes are turned on or off--of a group of Poecilia mexicana fish, or Atlantic molly, that live in springs naturally high in hydrogen sulfide, which is normally toxic to most organisms.
The researchers removed a sample of fish from the toxic water and bred them in freshwater. They found that the grandchildren of the sulfidic-adapted fish had more epigenetic marks ...
EVANSTON, Ill. --- The human gut is more than a source of instinct.
A new Northwestern University study is the first to explicitly address the gut microbiome as a pathway to understanding how environmental inequities could lead to health disparities.
Biological anthropologist Katherine Amato, assistant professor of anthropology at the Weinberg College of Arts and Sciences at Northwestern, is the study's lead author.
Amato says, despite a rich body of literature documenting environmental impacts on the microbiome, and the microbiome's impact on human health, ...
International team used the stomach bacteria Helicobacter pylori as a biomarker for ancient human migrations
DNA sequences catalogued at University of Warwick in EnteroBase, a public genomes database, demonstrate that a migration of Siberians to the Americas occurred approximately 12,000 years ago
Project began in 2000s but new statistical techniques allowed researchers to reconstruct and date the migrations of Siberian Helicobacter pylori
Early migrations of humans to the Americas from Siberia around 12,000 years ago have been traced using the bacteria they carried by an international team including scientists at the University of ...
Certain patients with an aggressive form of ovarian cancer have a better chance of a cure through surgical removal of their tumor before chemotherapy instead of the reverse, a new study shows.
Led by researchers at NYU Grossman School of Medicine, Perlmutter Cancer Center, and Dana-Farber Cancer Institute, the study used a mathematical tool to examine how doctors should coordinate available treatments for high-grade serous ovarian cancer (HGSC).
Ovarian cancer is the 8th most common cancer and cancer death in women worldwide, and HGSC constitutes roughly 70 percent of ovarian malignancies and has the worst prognosis. Patients with the condition typically undergo surgery and chemotherapy, but there has been long-standing controversy over the best order of treatment.
Published ...
A study of woodland ecosystems that provide habitat for rare and endangered species along streams and rivers throughout California reveals that some of these ecologically important areas are inadvertently benefitting from water that humans are diverting for their own needs. Though it seems a short-term boon to these ecosystems, the artificial supply creates an unintended dependence on its bounty, threatens the long-term survival of natural communities and spotlights the need for changes in the way water is managed across the state.
"We need to be more intentional in incorporating ecosystem water needs when we manage water--both for aquatic organisms and species on land," said Melissa Rohde, the lead author of a study published June ...
The concentration of potentially toxic metals is increasing in the population of the franciscana dolphin --a small cetacean, endemic from the Rio de la Plata and an endangered species-- according to a study led by a team of the Faculty of Biology and the Biodiversity Research Institute (IRBio), published in the journal Science of The Total Environment.
The impact of human activity in the region could be the cause for the increase of trace elements such as chromium, copper, iron and nickel in the dolphins' biological tissues, as stated in the study. The paper counts on the participation of members from the National History Museum of Uruguay, and is subsidized through a project of ...