The path(way) less traveled in DNA double-strand break repair
Researchers from Osaka University find that protein phosphatase 1 helps protect the ends of double-strand DNA breaks to promote their repair through the non-homologous end joining pathway
2021-07-13
(Press-News.org) Osaka, Japan - BRCA1, a protein that is well-known for its role in hereditary breast cancer, is an important part of the cellular system that repairs double-strand DNA breaks. Now, researchers from Japan have discovered a new way in which cells protect these broken DNA ends to make sure that they are repaired correctly.
In a study published in Cell Reports, researchers from Osaka University have revealed that protein phosphatase 1 (PP1) binds to double-strand breaks early on to promote repair by a process known as nonhomologous end joining instead of by homologous recombination.
The decision on which of these two pathways is used to repair double-strand breaks is carefully regulated by the cell in a number of different ways. One method involves a protein called RIF1 binding to broken DNA ends, where it prevents other proteins from further degrading the break site to repair by homologous recombination.
"Double-strand breaks that are not protected by the RIF1 protein complex are susceptible to digestion by other proteins, which creates a section of single-stranded DNA for repair by homologous recombination," explains lead author of the study Shin-Ya Isobe. "A protein called Shieldin can bind to this single-stranded DNA tail through RIF1 to prevent further digestion, but we suspected that other factors may also play a role in this process."
To identify other factors that could help protect newly broken DNA ends, the researchers used a technique called proteomic mass spectrometry to find out which proteins interact with RIF1.
"We found that PP1 binds specifically to RIF1 at the broken DNA ends, and that the physical interaction between these two proteins is necessary to block proteins that create single-stranded DNA from binding at double-strand break sites," explains Chikashi Obuse, senior author.
Importantly, the interaction between PP1 and RIF1 helps keep double-strand DNA breaks from developing a single-stranded "tail," which is what Shieldin binds to. This means that PP1 acts earlier in the process than Shieldin to help push the cell toward the non-homologous end joining repair pathway.
"Our findings reveal a novel mechanism for selecting a double-strand DNA break repair pathway that acts early on in the repair process," says Isobe.
Given that problems with double-strand break repair are a crucial feature of many cancers, understanding more about how the cell decides which pathway to use to fix these damaged sites could provide important insight into cancer development. The results from this study could therefore help develop new options for treating hereditary breast and ovarian cancer in the future.
INFORMATION:
The article, "Protein Phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action," was published in Cell Reports at DOI: https://doi.org/10.1016/j.celrep.2021.109383
About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.
Website: https://resou.osaka-u.ac.jp/en
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-13
For their own benefit and to grow beyond control, tumours manipulate cell signals to make it appear as if the cells have the nutrients they need. That is the case in follicular lymphoma, a type of tumour that affects the B lymphocytes of the immune system. One in six follicular lymphoma patients has mutations in RagC, a gene involved in the mTOR nutrient signalling pathway.
The team led by Alejo Efeyan, head of the Metabolism and Cell Signalling Group at the Spanish National Cancer Research Centre (CNIO), has discovered that genetic inhibition of the RagC protein blocks the activation of B lymphocytes and delays the onset of follicular lymphomas without side effects. The study, which was carried out in animal models, was published this ...
2021-07-13
Patients with Achilles tendinopathy, a disease of the Achilles tendon that can potentially cause significant pain, receive no benefit from being treated with platelet rich plasma (PRP) injection, a clinical trial led by the University of Warwick has found.
PRP is a treatment often used for a number of orthopaedic conditions and popularised by its use by elite sportspeople. However, this new study published today (13 July) in the Journal of the American Medical Association and funded by Versus Arthritis has shown that it is ineffective for the treatment of Achilles tendinopathy ...
2021-07-13
New research from the Institute of Psychiatry, Psychology & Neuroscience (IoPPN) at King's College London, in collaboration with Glasgow University, has found that teenagers who have self-harmed five or more times in their life have a significantly higher threshold for pain compared to adolescents that have not.
The study, which has been published in JAMA Network Open, is the largest study of its kind looking at the relationship between self-harm and bodily sensation, found that the threshold for sensitivity, both painful and not, increases significantly the more a participant ...
2021-07-13
(Boston)--Proper lung function relies on the precise balance of specialized epithelial cells (cells that line the surfaces of the body) that coordinate functions to maintain homeostasis. One important lung cell type is the goblet cell, which secretes mucus that helps protect the lining of the bronchus (major air passages of the lung) and trap microorganisms. Goblet cells are often increased in lung diseases, but signals that lead to their dysregulation are not well understood.
Researchers have now discovered a new set of signals that control the production of goblet cells in the lung. "By altering the proteins that control these signals we are able to either increase or decrease the production of goblet cells which offers potential new avenues for therapeutically targeting ...
2021-07-13
The journey of the egg and the embryo through the fallopian tube or oviduct toward the uterus is not well understood, mainly because it is inaccessible for direct imaging. Looking to shed new light on the dynamics of the eggs prior to fertilization and embryo transport preceding implantation, researchers at Baylor College of Medicine and Stevens Institute of Technology developed a novel imaging approach that has allowed them to see eggs and embryos as they move along the fallopian tube in a live animal.
Published in the journal Cell Reports, the researchers' observations revealed that eggs and embryos go through an unexpected journey that is more dynamic and complex than previously ...
2021-07-13
In addition to chemical factors, mechanical influences play an important role in the natural growth of human organs such as kidneys, lungs and mammary glands - but also in the development of tumors. Now a research team at the Technical University of Munich (TUM) has investigated the process in detail using organoids, three-dimensional model systems of such organs which are produced in the laboratory.
Organoids are three-dimensional systems modeling various human organs. Grown in the laboratory, they exhibit properties similar to those of actual body tissue. Organoids offer science new opportunities to simulate and investigate the processes of organ growth. These processes could not be observed in the ...
2021-07-13
The COVID-19 pandemic changed just about every aspect of normal life, including how we bought food.
While grocery stores remained open as an essential business and thrived financially throughout the pandemic, this prosperity did not translate to a consistent and sufficient food supply for many customers. Researchers have found that, on average, people went to the grocery store less frequently and spent more per trip during the pandemic.
Ran Xu, professor of allied health sciences in the College of Agriculture, Health, and Natural Resources, was interested in seeing if this trend applied to people who are food-insecure. COVID-19 exacerbated food insecurity for many. Pandemic-related job loss and ...
2021-07-13
A new study by a Swansea University academic has announced a new mathematical formula that will help engineers assess the point at which cellular materials, which are used a wide range of applications ranging from aerospace to the construction industry, will bend and buckle.
Professor Sondipon Adhikari, of the College of Engineering has published his findings in the Proceedings of the Royal Society A. The study details a formula that can calculate the elastic instability of cellular material, in this case hexagonal lattice material, also known as the honeycomb which is commonly used in the production of lightweight structures such as energy absorbent foams, mechanical and acoustic metamaterials and next-generation stent technology.
Professor ...
2021-07-13
Arlington, VA (July 13, 2021) -- Hospitals and other healthcare facilities should require employees to be vaccinated against COVID-19, according to a consensus statement by the Society for Healthcare Epidemiology of America (SHEA) and six other leading organizations representing medical professionals working in infectious diseases, infection prevention, pharmacy, pediatrics, and long-term care. The paper specifies exemption for those with medical contraindications, and some others circumstances in compliance with federal and state laws.
"The COVID-19 vaccines in use in the United States have been shown to be safe and ...
2021-07-13
Ashalcha oilfield in Tatarstan is one of the most popular locations to study the extraction of heavy oils. In particular, Kazan Federal University's In-Situ Combustion Lab has been working there for a few years.
Senior Research Associate Irek Mukhamatdinov explains, "On average, there are one sulfur and one nitrogen atom and five oxygen atoms per resin molecule. In the course of transformation under the action of a catalytic agent and a hydrogen donor, the content of heteroatoms (sulfur, nitrogen and oxygen) in a much larger number of structural blocks of resin molecules decreases. Resin molecules are mainly represented by mono- and two-block structures with a predominance of aromatic rings over naphthenic ones, with long paraffin chains."
His ...
LAST 30 PRESS RELEASES:
[Press-News.org] The path(way) less traveled in DNA double-strand break repair
Researchers from Osaka University find that protein phosphatase 1 helps protect the ends of double-strand DNA breaks to promote their repair through the non-homologous end joining pathway