(Press-News.org) A team including physicists of the University of Bern has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN’s Large Hadron Collider (LHC). The discovery promises to deepen scientists’ understanding of the nature of neutrinos, which are among the most abundant particles in the universe and key to the solution of the question why there is more matter than antimatter.
Neutrinos are fundamental particles that played an important role in the early phase of the universe. They are key to learn more about the fundamental laws of nature, including how particles acquire mass and why there is more matter than antimatter. Despite being among the most abundant particles in the universe they are very difficult to detect because they pass through matter with almost no interaction. They are therefore often called “ghost particles”.
Neutrinos have been known for several decades and were very important for establishing the standard model of particle physics. But most neutrinos studied by physicists so far have been low-energy neutrinos. Previously, no neutrino produced at a particle collider had ever been detected by an experiment. Now, an international team including researchers from the Laboratory for High Energy Physics (LHEP) of the University of Bern has succeeded in doing just that. Using the FASER particle detector at CERN in Geneva, the team was able to detect very high energy neutrinos produced by brand a new source: CERN’s Large Hadron Collider (LHC). The international FASER collaboration announced this result on March 19 at the MORIOND EW conference in La Thuile, Italy.
FASER enables investigation of high energy neutrinos
The properties of neutrinos have been studied in numerous experiments since their discovery in 1956 by Clyde L. Cowan and Frederick Reines. One of the leading experiments to study neutrinos is the Deep Underground Neutrino Experiment (DUNE) being built in the USA. The University of Bern is a key contributor. Experiments like DUNE are general purpose and can study many properties of neutrinos from a variety of sources. One aspect that is not covered is very high energy neutrinos.
The highest energy accelerator available is the LHC at CERN, where new particles are produced by two beams of protons smashing together at extremely high energy. However, neutrinos have never been detected at any collider because they escape the existing detectors at the LHC.
The FASER experiment was proposed to fill this gap. “In this experiment we measure very high energy neutrinos produced by the LHC collider at CERN. The goal is to study how these neutrinos are produced, what their properties are and to look for signals of new particles,” says Akitaka Ariga, leader of the FASER group at University of Bern’s Laboratory for High Energy Physics (LHEP). The LHEP is part of the Physics Institute and of the Albert Einstein Center for Fundamental Physics (AEC). “The FASER experiment is a unique idea at the interface between the highest energy colliders and neutrino physics. Often new discoveries are made when taking such new approaches,” says Michele Weber, director of the LHEP of the University of Bern.
Hidden physics in neutrinos?
For the current observation of neutrinos, the experiment took data at the LHC in 2022. The team detected 153 events that are neutrino interactions with extremely high certainty. The neutrinos detected by FASER are of the highest energy ever produced in a lab and are similar to the neutrinos coming from deep-space that trigger dramatic particle showers in our atmosphere or the earth. They are therefore also an important tool to researchers for better understanding observations in particle astrophysics.
“This achievement is a historical milestone for obtaining a new neutrino source with unexplored features,” says Akitaka Ariga. The presented result is just the very beginning of a series of explorations. The experiment will continue to take data till the end of 2025. “There might be hidden physics in neutrinos at high energy scale,” says Akitaka Ariga.
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101002690, FASERnu)
University of Bern leading institute of FASERnu neutrino detector
The FASER experiment consists of the FASER detector, which is designed to search for new elementary particles, such as dark matter candidates (dark photons), and the FASERnu neutrino detector. It is looking at collisions happening in the center of the large ATLAS particle detector at CERN’s Large Hadron Collider (LHC). A research group led by Michele Weber is involved in the ATLAS detector. Akitaka Ariga’s research group has been active in FASER since the design of the experiment. In particular, the Bern group is the leading institute of the FASERnu detector which is collecting data between 2022 and 2025. The FASERnu detector is going to reveal neutrinos’ properties with unprecedented sensitivity of all three different kinds (electron, muon and tau neutrinos).
Further information about FASERnu
Further information about ATLAS
The Laboratory for High Energy Physics (LHEP)
The Laboratory for High Energy Physics (LHEP) is a division of the Physics Institute at the University of Bern in Switzerland and is part of the Albert Einstein Center for Fundamental Physics. It conducts research in the field of experimental particle physics, with the main subjects: High-Energy Collider Physics, Neutrino Physics, Fundamental Neutron and Precision Physics, Muon Radiography, Development of Novel Particle Detectors and Medical Applications of Particle Physics.
Further information: https://www.lhep.unibe.ch/
The Albert Einstein Center for Fundamental Physics (AEC)
The Albert Einstein Center for Fundamental Physics (AEC) was founded in 2011. It has the goal of fostering research and teaching in fundamental physics at the highest level at the University of Bern. It focuses on experimental and theoretical particle physics and its applications (such as medical physics), as well as associated spin-off and outreach activities.
The AEC was founded with the collaboration of the Institute for Theoretical Physics (ITP) and the Laboratory for High Energy Physics (LHEP) of the University of Bern. With more than 100 members, the AEC is one of the largest university groups of researchers in the field of particle physics in Switzerland and a strong player at the international level.
Further information: https://www.einstein.unibe.ch/
END
First detection of neutrinos made at a particle collider
A team including physicists of the University of Bern has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN’s Large Hadron Collider (LHC)
2023-03-20
ELSE PRESS RELEASES FROM THIS DATE:
Coffee plantations limit birds’ diets
2023-03-20
Cast your mind back to the spring of 2020, when grocery store shelves sat bare of essential items and ingredients. For birds who live in the forests of Central America, replacement of forest land with coffee plantations essentially “clears out the shelves” of their preferred foods, causing them to shift their diets and habitats to survive.
A new study led by researchers at the University of Utah explores a record of birds’ diets preserved in their feathers and radio tracking of their movements to find that birds eat far fewer invertebrates ...
Researchers identify key source of T cell "exhaustion"
2023-03-20
Custom-made to attack cancer cells, CAR T-cell therapies have opened a new era in the treatment of human cancers, particularly, in hematologic malignancies. All too often, however, they display a frustrating trait inherited from the body's own immune system cells: a drastic loss of cancer-fighting fervor known as "exhaustion”. Exhaustion is not only seen in cancer-fighting T cells but is also frequent in the setting of viral infections, such as human immunodeficiency virus (HIV), hepatitis B/C viruses (HBV, HCV) and COVID-19 (SARS-CoV-2).
The lapse into listlessness has diminished the effectiveness of CAR T-cell therapies in some patients and prompted scientists to try ...
How do we make farming better for the planet? Ask women
2023-03-20
When a family of five-ton elephants stomps and chomps its way through your crops, there’s only one winner. And in the central African nation of Gabon, farmers are getting fed up with the giant animals trampling their fields—and their livelihoods.
In conservation terms, Gabon is a success story—protected areas and tough anti-poaching measures have allowed the numbers of critically endangered African forest elephants to stabilize. But with food prices rising, anti-elephant protests have been spiking too. “Some people cannot farm anymore—the elephants are eating so much of their crops,” Gabon’s environment minister ...
Biological BMI: ISB researchers dig deep into data to determine better measures of metabolic health
2023-03-20
SEATTLE – Institute for Systems Biology (ISB) researchers have constructed biological body mass index (BMI) measures that offer a more accurate representation of metabolic health and are more varied, informative and actionable than the traditional, long-used BMI equation. The work was published in the journal Nature Medicine.
For decades, clinicians have relied on BMI as a crude tool to classify individuals as underweight, normal weight, overweight or obese. BMI scores are calculated by dividing a person’s weight in kilograms by height in meters squared. About 30 percent of the population is misclassified by this approach. Despite its limitations, ...
Monell Center team discovers molecular basis for alkaline taste
2023-03-20
PHILADELPHIA (March 20, 2023) – The sense of taste is among the first to come into contact with food before we ingest it, but whether animals can taste basic or alkaline food and how they do it remained unclear until now. A research group led by Yali Zhang, PhD, Principal Investigator at the Monell Chemical Senses Center, recently addressed this significant question, as they similarly did for sour taste in 2021 on the lower end of the pH scale. Their work, published today in Nature Metabolism and highlighted in Nature, identified a previously unknown chloride ...
Scientists open door to manipulating ‘quantum light’
2023-03-20
For the first time, scientists at the University of Sydney and the University of Basel in Switzerland have demonstrated the ability to manipulate and identify small numbers of interacting photons – packets of light energy – with high correlation.
This unprecedented achievement represents an important landmark in the development of quantum technologies. It is published today in Nature Physics.
Stimulated light emission, postulated by Einstein in 1916, is widely observed for large numbers of photons and laid the basis for the invention of the laser. With this research, stimulated emission has now been observed for single photons.
Specifically, ...
Muscle health depends on lipid synthesis
2023-03-20
Muscle degeneration, the most prevalent cause of frailty in hereditary diseases and aging, could be caused by a deficiency in one key enzyme in a lipid biosynthesis pathway. Researchers at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences characterize how the enzyme PCYT2 affects muscle health in disease and aging in laboratory mouse models. The findings are published on March 20 in Nature Metabolism.
Muscle degeneration in inherited diseases and aging affects hundreds of millions of people ...
LieLab: the devil is in the details
2023-03-20
Figuring out a lie has never been easier: forget body language or how convincing the message is, just listen to how detailed and rich the story is. This is the core of a new approach to lie detection, say researchers from the University of Amsterdam's Leugenlab (LieLab) in collaboration with researchers from Maastricht University and Tilburg University.
Since 9/11, security staff have been trained to recognise no less than 92 signals that someone might be lying. Bruno Verschuere, associate professor of Forensic Psychology: ‘This ...
Ultrafast beam-steering breakthrough at Sandia National Labs
2023-03-20
ALBUQUERQUE, N.M. — In a major breakthrough in the fields of nanophotonics and ultrafast optics, a Sandia National Laboratories research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.
This ability to control light using a semiconductor device could allow low-power, relatively inexpensive sources like LEDs or flashlight bulbs to replace more powerful laser beams in new technologies such as holograms, remote sensing, self-driving cars and high-speed communication.
“What we’ve done is show that ...
Richards tracing racist violence through family networks of northern Louisiana
2023-03-20
Yevette Richards, Associate Professor, History and Art History, received funding to write a book about northern Louisiana.
The book will be a regional study of how kinship networks were central to the production of systemic racist terror and the subsequent erasure of its memory.
Richards will investigate a broad spectrum of racist violence from Reconstruction to the 1940s. She will show how white family networks functioned over time and across multiple parishes to serve as both incubators of racist violence and shields ...
LAST 30 PRESS RELEASES:
High-quality nanodiamonds for bioimaging and quantum sensing applications
New clinical practice guideline on the process for diagnosing Alzheimer’s disease or a related form of cognitive impairment or dementia
Evolution of fast-growing fish-eating herring in the Baltic Sea
Cryptographic protocol enables secure data sharing in the floating wind energy sector
Can drinking coffee or tea help prevent head and neck cancer?
Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration
Scientists unlock secrets behind flowering of the king of fruits
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
Tiny, wireless antennas use light to monitor cellular communication
Neutrality has played a pivotal, but under-examined, role in international relations, new research shows
Study reveals right whales live 130 years — or more
Researchers reveal how human eyelashes promote water drainage
Pollinators most vulnerable to rising global temperatures are flies, study shows
DFG to fund eight new research units
Modern AI systems have achieved Turing's vision, but not exactly how he hoped
Quantum walk computing unlocks new potential in quantum science and technology
Construction materials and household items are a part of a long-term carbon sink called the “technosphere”
First demonstration of quantum teleportation over busy Internet cables
Disparities and gaps in breast cancer screening for women ages 40 to 49
[Press-News.org] First detection of neutrinos made at a particle colliderA team including physicists of the University of Bern has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN’s Large Hadron Collider (LHC)