(Press-News.org)
An international scientific team has revealed for the first time the magnetic field transport processes in the accretion flow of a black hole and the formation of a "MAD"—a magnetically arrested disk—in the vicinity of a black hole.
The researchers made the discovery while conducting multi-wavelength observational studies of an outburst event of the black hole X-ray binary MAXI J1820+070, using Insight-HXMT, China's first X-ray astronomical satellite, as well as multiple telescopes.
Key to their discovery was the observation that the radio emission from the black hole jet and the optical emission from the outer region of the accretion flow lag behind the hard X-rays from the hot gas in the inner region of the accretion flow (i.e., the hot accretion flow) by about eight days and 17 days, respectively.
These findings were published in Science on Aug. 31.
The study was led by Assoc. Prof. YOU Bei from Wuhan University, Prof. CAO Xinwu from Zhejiang University and Prof. YAN Zhen from the Shanghai Astronomical Observatory (SHAO) of the Chinese Academy of Sciences.
The process of a black hole capturing gas is known as "accretion", and the gas falling into the black hole is referred to as an accretion flow. The viscous processes within the accretion flow effectively release gravitational potential energy, with a portion of the energy being converted into multi-wavelength radiation. This radiation can be observed by ground-based and space telescopes, allowing us to "see" the black hole.
However, there are "unseen" magnetic fields around the black hole. As the black hole accretes gas, it also drags the magnetic field inwards. Previous theories suggested that as the accreting gas continuously brings in weak external magnetic fields, the magnetic field progressively strengthens towards the inner region of the accretion flow. The outward magnetic force on the accretion flow increases and counteracts the inward gravitational pull from the black hole. Therefore, in the inner region of the accretion flow near the black hole, when the magnetic field reaches a certain strength, the accreted matter becomes trapped by the magnetic field and cannot freely fall into the black hole. This phenomenon is known as a magnetically arrested disk.
The MAD theory was proposed many years ago and has successfully explained some observational phenomena related to black hole accretion. However, no direct observational evidence for the existence of a MAD was available, and MAD formation and magnetic transport mechanisms remained mysteries.
In addition to the supermassive black holes at the centers of nearly every galaxy, there are also many more stellar-mass black holes in the universe. Astronomers have detected stellar-mass black holes in many binary star systems in the Milky Way. These black holes generally have a mass about ten times that of the Sun. Most of the time, these black holes are in a quiescent state, emitting extremely weak electromagnetic radiation. However, they occasionally enter an outburst period that can last for several months or even years, producing bright X-rays. As a result, these types of binary star systems are often referred to as black hole X-ray binaries.
In this study, the researchers performed a multi-wavelength data analysis of the outburst of the black hole X-ray binary MAXI J1820+070. They observed that the hard X-ray emission exhibited a peak that was followed by a peak in radio emission eight days later. Such a long delay between radio emission from the jet and the hard X-rays from the hot accretion flow is unprecedented.
These observations indicate that the weak magnetic field in the outer region of the accretion disk is carried into the inner region by the hot gas, and the radial extent of the hot accretion flow rapidly expands as the accretion rate decreases. The greater the radial extent of the hot accretion flow, the greater the increase in the magnetic field. This leads to a rapid strengthening of the magnetic field near the black hole, resulting in the formation of a MAD approximately eight days after the peak of the hard X-ray emission.
"Our study for the first time reveals the process of magnetic field transport in the accretion flow and the process of MAD formation in the vicinity of the black hole. This represents the direct observational evidence for the existence of a magnetically arrested disk," said Assoc. Prof. YOU Bei, first author and co-corresponding author of the study.
Additionally, the research team observed an unprecedented delay (about 17 days) between the optical emission from the outer region of the accretion flow and the hard X-rays from the hot accretion flow. Through numerical simulations of the outburst of the black hole X-ray binary, it was discovered that as the outburst approaches the end, the irradiation of hard X-rays causes more accreting material from the far outer region to fall towards the black hole due to instability. This leads to an optical flare in the outer region of the accretion flow, with the peak occurring about 17 days after the peak of the hard X-rays from the hot accretion flow.
"Due to the universality of black hole accretion physics, where accretion processes for black holes of different mass scales follow the same physical laws, this research will advance the understanding of scientific questions related to large-scale magnetic field formation, jet powering, and acceleration mechanisms for accreting black holes of different mass scales," said Prof. CAO Xinwu, co-corresponding author of the study.
Similar phenomena to those observed in MAXI J1820+070 are expected to be observed in more accreting black hole systems in the near future, noted Prof. YAN Zhen, co-corresponding author of the study.
END
An international team of marine scientists, led by the University of Groningen in the Netherlands and the Center for Coastal Studies in the USA, has studied the DNA of family groups from four different whale species to estimate their mutation rates. The results revealed much higher mutation rates than previously thought, and which are similar to those of smaller mammals such as humans, apes, and dolphins. Using the newly determined rates, the group found that the number of humpback whales in the North Atlantic before whaling was 86 percent lower than earlier studies suggested. The study is the first proof that this method can be used to estimate mutation rates ...
Researchers at University of Manchester and the École polytechnique fédérale de Lausanne (EPFL), Switzerland, have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.
Nanofluidics, the study of fluids confined within ultra-small spaces, offers insights into the behaviour of liquids on a nanometer scale. However, exploring the movement of individual molecules in such confined environments has been challenging due to the limitations of conventional microscopy techniques. This obstacle prevented ...
LAWRENCE, KANSAS — Breast milk is widely acknowledged as the most beneficial nutrition for infants, but many families face medical or logistical challenges in breastfeeding. In the U.S., just 45% of infants continue to be exclusively breastfed at 3 months of age, according to the Centers for Disease Control.
For decades, researchers have sought to create a viable complement or alternative to breast milk to give children their best start for healthy development. New research out of the University of Kansas has shown how a complex component of milk that can be added to infant ...
URBANA, Ill. — Artificial roosts for bats come in many forms — bat boxes, condos, bark mimics, clay roosts, and cinder block structures, to name a few — but a new conservation practice and policy article from researchers at the University of Illinois Urbana-Champaign suggests the structures haven’t been studied rigorously enough and may harm bats in some scenarios. The article, published in Conservation Biology, lays out potential dangers and encourages more research on the popular conservation practice.
“The major emphasis among conservation managers using artificial roosts is how to attract ...
JMIR Dermatology Editor-in-Chief: Robert Dellavalle, MD, PhD, MSPH and guest editors James A Solomon, MD, PhD, FAAD and Ian Brooks, PhD welcome submissions to a special theme issue examining "Artificial Intelligence (AI) and ChatGPT in Dermatology."
JMIR Dermatology welcomes all topics related to diseases of the skin, hair, and nails, with a wide breadth and depth of papers focusing on AI applications. All topics at the intersection of dermatology, AI, and ChatGPT are eligible for this theme issue.
The journal ...
An artificial intelligence with the ability to look inward and fine tune its own neural network performs better when it chooses diversity over lack of diversity, a new study finds. The resulting diverse neural networks were particularly effective at solving complex tasks.
“We created a test system with a non-human intelligence, an artificial intelligence (AI), to see if the AI would choose diversity over the lack of diversity and if its choice would improve the performance of the AI,” says William Ditto, professor of physics at North Carolina State University, director ...
UNIVERSITY PARK, Pa. — Kenneth Davis, professor of atmospheric and climate science at Penn State, will lead a team of 23 investigators from 13 research institutions in a new field campaign supported by the U.S. Department of Energy (DOE) to study surface-atmosphere interactions around Baltimore, Maryland, to see how they influence the city’s climate. The new campaign, called the Coast-Urban-Rural Atmospheric Gradient Experiment (CoURAGE), is expected to start in October 2024 and run through September 2025.
CoURAGE will contribute to the Baltimore Social-Environmental ...
Infants who spent most of their first year in the pandemic have fewer types of bacteria in their gut than infants born earlier, according to a team of developmental psychology researchers.
The findings, published in Scientific Reports, showed that infants whose gut microbes were sampled during the pandemic had lower alpha diversity of the gut microbiome, meaning that there were fewer species of bacteria in the gut. The infants had a lower abundance of Pasteurellaceae and Haemophilus—bacteria that live within humans and can cause various infections—and significantly different beta diversity, which tells us how similar or dissimilar the gut microbiome for ...
A new blood test called p-tau217 shows promise as an Alzheimer's disease biomarker, and when used in a two-step workflow very high accuracy to either identify or exclude brain amyloidosis, the most important and earliest pathology. That is an innovation now presented by researchers at the University of Gothenburg, together with colleagues at University of Lund and in Montreal, Canada.
In recent years, a lot of effort has been put on developing biomarkers in blood that could potentially help to identify Alzheimer’s disease (AD). Tau protein, ...
Vitamin C and other antioxidants stimulate the formation of new blood vessels in lung cancer tumours, a new study from Karolinska Institutet published in The Journal of Clinical Investigation shows. The discovery corroborates the idea that dietary supplements containing antioxidants can accelerate tumour growth and metastasis.
“We’ve found that antioxidants activate a mechanism that causes cancer tumours to form new blood vessels, which is surprising, since it was previously thought that antioxidants have a protective effect,” says study leader Martin Bergö, professor at the ...