(Press-News.org) Device can manipulate which organ is driving a disease to study its downstream effects
Can serve as intermediate step between animal studies and clinical trials to test new drugs
‘We wanted to make it as easy as using a smartphone’
Imagine a device smaller than a toddler’s shoebox that can simulate any human disease in multiple organs or test new drugs without ever entering — or harming — the body.
Scientists at Northwestern University have developed this new technology — called Lattice — to study interactions between up to eight unique organ tissue cultures (cells from a human organ) for extended periods of time to replicate how actual organs will respond. It is a major advancement from current in vitro systems, which can only study two cell cultures simultaneously.
The goal is to simulate what happens inside the body to analyze, for example, how obesity might affect a particular disease; how women metabolize drugs differently than men; or what might be initially driving a disease that eventually impacts multiple organs.
“When something’s happening in the body, we don’t know exactly who’s talking to whom,” said lead scientist Julie Kim, professor of obstetrics and gynecology at Northwestern University Feinberg School of Medicine. “Currently, scientists use dishes that have one or two cell types, and then do in-depth research and analysis, but Lattice provides a huge advancement. This platform is much better suited to mimic what’s happening in the body, because it can simulate so many organs at once.”
A study detailing the new technology will be published Oct. 3 in the journal Lab on a Chip.
Choose-your-own-adventure disease simulator
The microfluidic device has a series of channels and pumps that cause media (simulated blood) to flow between the eight wells. A computer connected to Lattice precisely controls how much media flows through each well, where it flows and when. Depending on which disease or drug the scientist wants to test, they can fill each well with a different organ tissue, hormone, disease or medication.
For instance, Kim’s lab is using Lattice to study polycystic ovarian syndrome (PCOS), which is a condition characterized by an imbalance of reproductive hormones and metabolism problems. Scientists still aren’t sure why or how PCOS develops. Although it affects the ovaries, many other organ systems in the body are affected.
“What we can do with Lattice is start manipulating and controlling which organ is driving the disease,” Kim said. “So, in one experiment, we might start with a PCOS ovary to see how it impacts the liver or muscles. Another experiment might examine if it is the high insulin associated with the disease that’s driving the different organ systems to behave erratically. We can control the tissues and order them in specific ways.”
A fail-safe check before clinical trials
The current method of testing new drugs begins in the lab in a dish (in vitro), then is tested in animal models, and next moves to human clinical trials.
“There’s nothing in between animal testing and human clinical trials, and we find that many drugs fail in humans,” Kim said. “Lattice could be that intermediate step between animal studies and clinical trials, because we can test drugs that have passed animal studies to see if they’re safe for human tissues. It’s one more fail-safe check before we put them in bodies.”
Lattice can test longer than other in vitro systems
Standard primary cell cultures in current in vitro dishes don’t survive long, Kim said. But Lattice was designed to provide fresh media (simulated blood) to the cultures and to eliminate waste through the pumping of media through each of the eight wells so that the tissues survive longer. The scientists have tested the system for up to 28 days and hope to go longer, Kim said.
“For instance, obesity is a major risk factor for endometrial cancer,” Kim said. “We could never study the impact of risk factors in a dish because they require long-term cultures. In Lattice, we can study how fat directly affects the endometrium for a longer period of time and study some early changes that occur in endometrial cells.”
User-friendly for broad research use
Lattice is the second-generation version of EVATAR, whose creation was led by Teresa Woodruff, a former Northwestern faculty member and co-author on the current study. EVATAR is a miniature female reproductive tract that enables scientists to conduct much-needed testing of new drugs for safety and effectiveness on the female reproductive system. Lattice was created to study many more diseases in both men and women. It is cheaper and more user friendly, which Kim said she hopes will allow for broad use in the research and pharmaceutical fields.
“Since EVATAR, we wanted to make something user friendly, so you don’t need engineers on hand to assemble or troubleshoot it,” Kim said. “We wanted to make it as easy as using a smartphone — take it out of the box, turn it on and use it — so researchers can get data and not spend too much time on how to work it in their lab.”
The study, “A New Tissue-Agnostic Microfluidic Device to model physiology and disease: The Lattice Platform,” was conducted in collaboration with scientists from University of Illinois Chicago, Rutgers University and Michigan State University. Northwestern’s Hannes Campo, a postdoctoral fellow in Kim’s lab, is the study’s first author.
END
New Discoveries in the Development of Alzheimer's Disease in a Study led by Professor Michael Glickman and Dr. Inbal Maniv from the Faculty of Biology at the Technion were Published in Nature Communications.
Alzheimer's disease was named after the German researcher Dr. Alois Alzheimer, who first described it in 1906. The disease is characterized by the degeneration and death of nerve cells, processes that lead to a progressive impairment of cognitive abilities. It occurs typically in adults over the age of 65, but a small percentage of all Alzheimer's patients are hereditary cases that affect younger ...
The ability to have access to the Internet or use a mobile phone anywhere in the world is taken more and more for granted, but the brightness of Internet and telecommunications satellites that enable global communications networks could pose problems for ground-based astronomy. University of Illinois Urbana-Champaign aerospace engineer Siegfried Eggl coordinated an international study confirming recently deployed satellites are as bright as stars seen by the unaided eye.
“From our observations, we learned that AST Space Mobile’s BlueWalker 3—a constellation prototype satellite featuring a ...
OAK BROOK, Ill. – A new artificial intelligence (AI) model combines imaging information with clinical patient data to improve diagnostic performance on chest X-rays, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA).
Clinicians consider both imaging and non-imaging data when diagnosing diseases. However, current AI-based approaches are tailored to solve tasks with only one type of data at a time.
Transformer-based neural networks, a relatively new class of AI models, have the ability to combine imaging and ...
A two-phase NIH grant will fund research into a new CRISPR-based gene therapy platform that will target genetic brain diseases like Angelman syndrome and H1-4 (HIST1H1E) syndrome.
A roughly $40 million National Institutes of Health (NIH) grant awarded to Yale School of Medicine will support the development of a gene-editing platform technology capable of reaching the human brain. The innovative new genome-editing technology, which was developed from the first phase from NIH Common Fund Somatic Cell Genome Editing (SCGE) program, could potentially lead to treatments or cures for many neurogenetic diseases.
Neurogenetic disorders ...
When scientists viewed the James Webb Space Telescope’s (JWST) first images of the universe’s earliest galaxies, they were shocked. The young galaxies appeared too bright, too massive and too mature to have formed so soon after the Big Bang. It would be like an infant growing into an adult within just a couple years.
The startling discovery even caused some physicists to question the standard model of cosmology, wondering whether or not it should be upended.
Using new simulations, a Northwestern University-led ...
Van Andel Institute’s Nick Burton, Ph.D., has earned a five-year, nearly $2.9 million New Innovator Award from the National Institutes of Health Common Fund to find new ways to fix or prevent insulin resistance, a key driver of Type 2 diabetes.
Although manageable with treatment, there currently is no way to repair the underlying mechanisms that cause the disease. Furthermore, it remains unclear why some people are more prone to Type 2 diabetes while others are resistant. To find a solution, Burton ...
SAN ANTONIO — October 3, 2023 —A new study led by Southwest Research Institute (SwRI) Planetary Scientist and Associate Vice President Dr. Alan Stern posits that the large, approximately 5-kilometer-long mounds that dominate the appearance of the larger lobe of the pristine Kuiper Belt object Arrokoth are similar enough to suggest a common origin. The SwRI study suggests that these “building blocks” could guide further work on planetesimal formational models. Stern presented these findings this week ...
NEW YORK, Oct. 3, 2023 — Mandë Holford, a professor in the Chemistry and Biochemistry departments at Hunter College and The City University of New York Graduate Center (CUNY Graduate Center), has won a National Institutes of Health Common Fund Pioneer Award for her trailblazing research exploring the therapeutic opportunities and properties of venoms from cephalopods and other marine mollusks. Holford received one of eight Pioneer Awards granted in 2023, which will total more than $47.7 million over five years.
This is the first time a CUNY ...
AUGUSTA, Ga. (Oct. 4, 2022) – A synthetic peptide developed by researchers at the Medical College of Georgia could help reduce vascular problems associated with acute respiratory distress syndrome in COVID-19.
In severe cases, COVID-19 is associated with the syndrome, which happens when fluid builds up in the tiny, elastic air sacs in the lungs, keeping them from filling with enough air and keeping oxygen from reaching the bloodstream. “These are the people who get the sickest from ...
MedAxiom, the premier source for cardiovascular organizational performance solutions, has released its 2023 Cardiovascular Provider Compensation and Production Survey Report that includes data from the largest number of providers since its debut. The report features a foreword from MedAxiom President and CEO Jerry Blackwell, MD, MBA, FACC, on the consistency of year-over-year data from 2021 to 2022, the importance of a robust pool of data to form the foundation of the report, and the application of data as a strategic planning tool.
2023 Report Highlights:
Compensation and production ...