(Press-News.org) Neuroengineer Silvestro Micera develops advanced technological solutions to help people regain sensory and motor functions that have been lost due to traumatic events or neurological disorders. Until now, he had never before worked on enhancing the human body and cognition with the help of technology.
Now in a study published in Science Robotics, Micera and his team report on how diaphragm movement can be monitored for successful control of an extra arm, essentially augmenting a healthy individual with a third – robotic – arm.
“This study opens up new and exciting opportunities, showing that extra arms can be extensively controlled and that simultaneous control with both natural arms is possible,” says Micera, Bertarelli Foundation Chair in Translational Neuroengineering at EPFL, and professor of Bioelectronics at Scuola Superiore Sant’Anna.
The study is part of the Third-Arm project, previously funded by the Swiss National Science Foundation (NCCR Robotics), that aims to provide a wearable robotic arm to assist in daily tasks or to help in search and rescue. Micera believes that exploring the cognitive limitations of third-arm control may actually provide gateways towards better understanding of the human brain.
Micera continues, “The main motivation of this third arm control is to understand the nervous system. If you challenge the brain to do something that is completely new, you can learn if the brain has the capacity to do it and if it’s possible to facilitate this learning. We can then transfer this knowledge to develop, for example, assistive devices for people with disabilities, or rehabilitation protocols after stroke.”
“We want to understand if our brains are hardwired to control what nature has given us, and we’ve shown that the human brain can adapt to coordinate new limbs in tandem with our biological ones,” explains Solaiman Shokur, co-PI of the study and EPFL Senior Scientist at the Neuro-X Institute. “It’s about acquiring new motor functions, enhancement beyond the existing functions of a given user, be it a healthy individual or a disabled one. From a nervous system perspective, it’s a continuum between rehabilitation and augmentation.”
To explore the cognitive constraints of augmentation, the researchers first built a virtual environment to test a healthy user’s capacity to control a virtual arm using movement of his or her diaphragm. They found that diaphragm control does not interfere with actions like controlling one’s physiological arms, one’s speech or gaze.
In this virtual reality setup, the user is equipped with a belt that measures diaphragm movement. Wearing a virtual reality headset, the user sees three arms: the right arm and hand, the left arm and hand, and a third arm between the two with a symmetric, six-fingered hand.
“We made this hand symmetric to avoid any bias towards either the left or the right hand,” explains Giulia Dominijanni, PhD student at EPFL’s Neuro-X Institute.
In the virtual environment, the user is then prompted to reach out with either the left hand, the right hand, or in the middle with the symmetric hand. In the real environment, the user holds onto an exoskeleton with both arms, which allows for control of the virtual left and right arms. Movement detected by the belt around the diaphragm is used for controlling the virtual middle, symmetric arm. The setup was tested on 61 healthy subjects in over 150 sessions.
“Diaphragm control of the third arm is actually very intuitive, with participants learning to control the extra limb very quickly,” explains Dominijanni. “Moreover, our control strategy is inherently independent from the biological limbs and we show that diaphragm control does not impact a user’s ability to speak coherently.”
The researchers also successfully tested diaphragm control with an actual robotic arm, a simplified one that consists of a rod that can be extended out, and back in. When the user contracts the diaphragm, the rod is extended out. In an experiment similar to the VR environment, the user is asked to reach and hover over target circles with her left or right hand, or with the robotic rod.
Besides the diaphragm, but not reported in the study, vestigial ear muscles have also been tested for feasibility in performing new tasks. In this approach, a user is equipped with ear sensors and trained to use fine ear muscle movement to control the displacement of a computer mouse.
“Users could potentially use these ear muscles to control an extra limb,” says Shokur, emphasizing that these alternative control strategies may help one day for the development of rehabilitation protocols for people with motor deficiencies.
Part of the third arm project, previous studies regarding the control of robotic arms have been focused on helping amputees. The latest Science Robotics study is a step beyond repairing the human body towards augmentation.
“Our next step is to explore the use of more complex robotic devices using our various control strategies, to perform real-life tasks, both inside and outside of the laboratory. Only then will we be able to grasp the real potential of this approach,” concludes Micera.
Neuroengineer Silvestro Micera develops advanced technological solutions to help people regain sensory and motor functions that have been lost due to traumatic events or neurological disorders. Until now, he had never before worked on enhancing the human body and cognition with the help of technology.
Now in a study published in Science Robotics, Micera and his team report on how diaphragm movement can be monitored for successful control of an extra arm, essentially augmenting a healthy individual with a third – robotic – arm.
“This study opens up new and exciting opportunities, showing that extra arms can be extensively controlled and that simultaneous control with both natural arms is possible,” says Micera, Bertarelli Foundation Chair in Translational Neuroengineering at EPFL, and professor of Bioelectronics at Scuola Superiore Sant’Anna.
The study is part of the Third-Arm project, previously funded by the Swiss National Science Foundation (NCCR Robotics), that aims to provide a wearable robotic arm to assist in daily tasks or to help in search and rescue. Micera believes that exploring the cognitive limitations of third-arm control may actually provide gateways towards better understanding of the human brain.
Micera continues, “The main motivation of this third arm control is to understand the nervous system. If you challenge the brain to do something that is completely new, you can learn if the brain has the capacity to do it and if it’s possible to facilitate this learning. We can then transfer this knowledge to develop, for example, assistive devices for people with disabilities, or rehabilitation protocols after stroke.”
“We want to understand if our brains are hardwired to control what nature has given us, and we’ve shown that the human brain can adapt to coordinate new limbs in tandem with our biological ones,” explains Solaiman Shokur, co-PI of the study and EPFL Senior Scientist at the Neuro-X Institute. “It’s about acquiring new motor functions, enhancement beyond the existing functions of a given user, be it a healthy individual or a disabled one. From a nervous system perspective, it’s a continuum between rehabilitation and augmentation.”
To explore the cognitive constraints of augmentation, the researchers first built a virtual environment to test a healthy user’s capacity to control a virtual arm using movement of his or her diaphragm. They found that diaphragm control does not interfere with actions like controlling one’s physiological arms, one’s speech or gaze.
In this virtual reality setup, the user is equipped with a belt that measures diaphragm movement. Wearing a virtual reality headset, the user sees three arms: the right arm and hand, the left arm and hand, and a third arm between the two with a symmetric, six-fingered hand.
“We made this hand symmetric to avoid any bias towards either the left or the right hand,” explains Giulia Dominijanni, PhD student at EPFL’s Neuro-X Institute.
In the virtual environment, the user is then prompted to reach out with either the left hand, the right hand, or in the middle with the symmetric hand. In the real environment, the user holds onto an exoskeleton with both arms, which allows for control of the virtual left and right arms. Movement detected by the belt around the diaphragm is used for controlling the virtual middle, symmetric arm. The setup was tested on 61 healthy subjects in over 150 sessions.
“Diaphragm control of the third arm is actually very intuitive, with participants learning to control the extra limb very quickly,” explains Dominijanni. “Moreover, our control strategy is inherently independent from the biological limbs and we show that diaphragm control does not impact a user’s ability to speak coherently.”
The researchers also successfully tested diaphragm control with an actual robotic arm, a simplified one that consists of a rod that can be extended out, and back in. When the user contracts the diaphragm, the rod is extended out. In an experiment similar to the VR environment, the user is asked to reach and hover over target circles with her left or right hand, or with the robotic rod.
Besides the diaphragm, but not reported in the study, vestigial ear muscles have also been tested for feasibility in performing new tasks. In this approach, a user is equipped with ear sensors and trained to use fine ear muscle movement to control the displacement of a computer mouse.
“Users could potentially use these ear muscles to control an extra limb,” says Shokur, emphasizing that these alternative control strategies may help one day for the development of rehabilitation protocols for people with motor deficiencies.
Part of the third arm project, previous studies regarding the control of robotic arms have been focused on helping amputees. The latest Science Robotics study is a step beyond repairing the human body towards augmentation.
“Our next step is to explore the use of more complex robotic devices using our various control strategies, to perform real-life tasks, both inside and outside of the laboratory. Only then will we be able to grasp the real potential of this approach,” concludes Micera.
END
Cognitive strategies for augmenting the body with a wearable, robotic arm
2023-12-13
ELSE PRESS RELEASES FROM THIS DATE:
Earliest evidence for domestic yak found using both archaeology, ancient DNA
2023-12-13
The high-altitude hero of the Himalayas, yak are among the few large animals that can survive the extremely cold, harsh and oxygen-poor conditions of the Tibetan Plateau. In the mountainous regions of Asia, yak and yak-cattle hybrids serve as vital sources of meat, milk, transportation and fuel. However, little is known about their history: when or where yak were domesticated.
In a study published Dec. 13 in Science Advances, an international team of researchers that includes archaeologists at Washington University in St. Louis report archaeologically and genetically confirmed evidence for domestic yak, dating back 2,500 years, by far the oldest record.
The researchers ...
Deep neural networks show promise as models of human hearing
2023-12-13
CAMBRIDGE, MA -- Computational models that mimic the structure and function of the human auditory system could help researchers design better hearing aids, cochlear implants, and brain-machine interfaces. A new study from MIT has found that modern computational models derived from machine learning are moving closer to this goal.
In the largest study yet of deep neural networks that have been trained to perform auditory tasks, the MIT team showed that most of these models generate internal representations ...
Researchers create stable hybrid laser by 3D printing micro-optics onto fibers
2023-12-13
WASHINGTON — For the first time, researchers have shown that 3D-printed polymer-based micro-optics can withstand the heat and power levels that occur inside a laser. The advance enables inexpensive compact and stable laser sources that would be useful in a variety of applications, including the lidar systems used for autonomous vehicles.
“We significantly reduced the size of a laser by using 3D printing to fabricate high-quality micro-optics directly on glass fibers used inside of lasers,” said research team leader Simon Angstenberger from the 4th Physics Institute at University of Stuttgart ...
Wistar scientists enhance cell-based therapy to destroy solid tumors
2023-12-13
PHILADELPHIA—(Dec. 13, 2023)—Wistar researchers successfully tested a simple intervention that could unlock greater anti-tumor power in therapies that use T cells — an approach known as “cell-based therapy,” which uses specially designed T cells to fight cancer. Led by Dr. Hildegund C.J. Ertl — a professor in The Wistar Institute’s Vaccine & Immunotherapy Center — the team has proven an exciting concept: that the common cholesterol drug fenofibrate can boost T cells’ ability to destroy human tumors, as described in their new paper, “Treatment ...
Trees are in trouble
2023-12-13
This holiday season brings surprising news about your Christmas tree. Scientists just discovered that globally, trees growing in wetter regions are more sensitive to drought. That means if your tree hails from a more humid clime, it’s likely been spoiled for generations.
Scientists have long debated whether arid conditions make trees more or less resilient to drought. It seems intuitive that trees living at their biological limits will be most vulnerable to climate change, since even just a little extra stress could tip them past the brink. On the other hand, these populations have adapted to a harsher setting, so they might be more capable of withstanding a drought.
According ...
New genetic vulnerability to herbicide found in nearly 50 sweet and field corn lines
2023-12-13
URBANA, Ill. — When a sweet corn breeder reached out in 2021 to report severe injury from the herbicide tolpyralate, Marty Williams hoped it was a fluke isolated to a single inbred line. But two years later, after methodical field, greenhouse, and genetic testing, his new Pest Management Science study not only confirms sensitivity to tolpyralate in 49 sweet corn and field corn lines, but also reveals a new genetic vulnerability that may affect corn more generally.
Tolpyralate is a relatively new ...
Charles Lee inducted as a fellow of The Korean Academy of Science and Technology
2023-12-13
The Korean Academy of Science and Technology (KAST), the highest institution of its kind in South Korea, announced Charles Lee, Ph.D., FACMG, as a newly inducted fellow of the Academy. This recognition is given to scientists and engineers who have been active in their field for more than 20 years and made significant contributions during that time.
Lee is the scientific director and professor at The Jackson Laboratory for Genomic Medicine, and is the Robert Alvine Family Endowed Chair. He was awarded the KAST honor in recognition of his extensive global contributions to human genomics research. Dr. Lee is one of 33 newly appointed fellows to the academy ...
Women may pay a "MOM PENALTY" when AI is used in hiring, new research from NYU Tandon School of Engineering suggests
2023-12-13
Maternity-related employment gaps may cause job candidates to be unfairly screened out of positions for which they are otherwise qualified, according to new research from NYU Tandon School of Engineering.
A research team led by Siddharth Garg, Institute Associate Professor of Electrical and Computer Engineering, examined bias in Large Language Models (LLMs) – advanced AI systems trained to understand and generate human language – when used in hiring processes.
The team will present its findings in a paper presented at NeurIPS ...
Study presents new pathway for electrochemically controlling ion selectivity
2023-12-13
A new study by researchers at the University of Illinois Urbana-Champaign advances fundamental knowledge about the role of solvation in ion binding and presents a new pathway for electrochemically controlling ion selectivity. The study was published in JACS Au.
The team, led by Chemical & Biomolecular Engineering professor Xiao Su and recently graduated Ph.D. student Raylin Chen, is building on their prior work exploring electrochemical separations of ions, which has revealed that a critical mechanism for binding ions is solvation.
Here, the researchers set out to control solvation of a polymer and use that to bind different ...
Poor diet quality during adolescence is linked to serious health risks
2023-12-13
Philadelphia, December 13, 2023 – Diet quality among adolescents in the United States is among the worst across all age groups, putting young people at risk for heart attack, stroke, and diabetes, among other cardiometabolic diseases later in life. The research brief shared in the Journal of Nutrition Education and Behavior, published by Elsevier, used the Healthy Eating Index-2015 and medical testing to assess a group of youth aged 10-16 years.
This study examined data from the Translational Investigation of Growth and Everyday Routine in Kids cohort. This study measured physical activity, sleep, and overall dietary guidelines for youth living in metropolitan areas ...