PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Wellcome Sanger Institute: Cancer drug discovery accelerated as hundreds of overlooked targets prioritised

The second generation of the Cancer Dependency Map uncovers 370 priority drug targets, with strong links to specific cancer types.

Wellcome Sanger Institute: Cancer drug discovery accelerated as hundreds of overlooked targets prioritised
2024-01-11
(Press-News.org)

A new, systematic analysis of cancer cells identifies 370 candidate priority drug targets across 27 cancer types, including breast, lung and ovarian cancers.

By looking at multiple layers of functional and genomic information, researchers were able to create an unbiased, panoramic view of what enables cancer cells to grow and survive. They identify new opportunities for cancer therapies in a significant leap towards a new generation of smarter, more effective cancer treatments.

In the most comprehensive study of its kind, researchers from the Wellcome Sanger Institute, Open Targets and their collaborators, pooled together data from 930 cancer cell lines. They then used machine learning methods to find the drug targets that show the most promise for developing new treatments, and the patients who would most benefit from such treatments. This involved assessing the occurrence of these targets in actual patient tumours and linking them to specific biological markers and genetic and molecular features found in the tumours.

The findings, published today (11 January) in Cancer Cell, not only bring researchers one step closer to producing a full Cancer Dependency Map1 of every vulnerability in every type of cancer, but help guide focused efforts to accelerate the development of targeted cancer treatments.

There are many types of cancer that currently lack effective treatments, such as liver and ovarian cancers. Chemotherapy and radiotherapy are effective treatments, but unable to distinguish normal cells from cancerous ones, so can cause damage throughout the entire body with harsh side effects, such as extreme fatigue, nausea and hair loss.

New precision drugs based on the exact genetic mutations that drive the cancer are needed to help the millions of patients diagnosed with some form of cancer each year, responsible for one in six deaths worldwide2. However, drug development has a 90 per cent failure rate3, making it both costly and inefficient.

With over 20,000 potential anti-cancer targets in the genome, determining which are suitable to target for specific types of cancers and patients is a significant challenge.

In this new study, researchers from the Wellcome Sanger Institute and their collaborators set out to narrow down potential drug targets. By analysing data available from the Cancer Dependency Map project, which involved CRISPR technology4 to disrupt every gene inside 930 human cancer lines one at a time, they were able to produce the most comprehensive view of potential new cancer targets to date.

The researchers first identified weaknesses within different cancer types – so-called genetic dependencies, meaning which genes, proteins or cellular processes that cancer cells rely on to survive – that could be harnessed to make new therapies. They then linked those weaknesses to clinical markers to identify patients in which those therapies would be most effective. Finally, they explored how dependency-marker pairs fit into known networks of molecular interactions within cells, providing clues as to how cell biology is disrupted by cancer, and which targets might yield the most effective therapies.

The work provides a clearer understanding of which types of cancer can possibly be treated by existing drug discovery strategies and pinpoint areas where novel and innovative approaches are needed.

The findings underscore the importance of tailoring treatments to the unique characteristics of each cancer, promising more personalised care for patients with fewer side effects in the future.

Dr Francesco Iorio, co-lead author of the study from the Computational Biology Research Centre of Human Technopole, said: “Analysing the largest-ever cancer dependency dataset, we present the most comprehensive map yet of human cancers' vulnerabilities - their "Achilles heel". We identify a new list of top-priority targets for potential treatments, along with clues about which patients might benefit the most - all made possible through the design and use of innovative computational and machine intelligence methodologies.”

Dr Mathew Garnett, co-lead author of the study at the Wellcome Sanger Institute and Open Targets, said: “Our work uncovers 370 candidate priority targets for tackling the most prevalent cancers, including breast, lung and colon cancers. This work exploits the latest in genomics and computational biology to understand how we can best target cancer cells. This will help drug developers focus their efforts on the highest value targets to bring new medicines to patients more quickly.”

Dr Marianne Baker, science engagement manager at Cancer Research UK, said: “Two people might have the same type of cancer, but their diseases can behave differently. That is why we need precision medicine. This ambitious work is a compelling example of research informing drug discovery from the start, paving the way for more effective precision cancer therapies. Giving people treatments for their unique cancer can improve the odds of success and help more people affected by cancer live longer, better lives.”

ENDS

Contact details:
Jelena Pupavac
Press Office
Wellcome Sanger Institute
Cambridge, CB10 1SA
Email: press.office@sanger.ac.uk

Notes to Editors: 

1. The Cancer Dependency Map is an international collaboration between the Wellcome Sanger Institute and the Broad Institute in the United States. The results of the first iteration of the Cancer Dependency Map were published in 2019. The Cancer Dependency Map at the Sanger Institute is a project that aims to assign a dependency to every cancer cell in a patient, which could be exploited to develop new therapies. It is linked with the Open Targets initiative to facilitate new drug target identification. Projects developed by the Open Targets consortium have supported elements of the Cancer Dependency map to facilitate new drug target identification inclusive of this research. https://depmap.sanger.ac.uk/

2. https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer

3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293739/

4. CRISPR-CAS9 is a tool used to precisely edit DNA.

These data can be accessed on the Sanger Institute’s Cancer Dependency Map website: https://depmap.sanger.ac.uk/

Publication:
C. Pacini et al. (2023) ‘A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization’ Cancer Cell. DOI: 10.1016/j.ccell.2023.12.016

Funding:
This research was supported by Wellcome and Open Targets. For full funding acknowledgements, please refer to the publication.

Selected websites:

Human Technopole
Human Technopole is an Italian life science institute situated at the heart of MIND (Milano Innovation District). Its overarching mission is to enhance human health and well-being by conducting cutting-edge research in the life sciences, with a focus on developing innovative approaches in preventive and personalized medicine. Additionally, the institute is dedicated to establishing and operating scientific services and facilities that are accessible to external researchers. It plays a crucial role in training the next generation of leading scientists, as well as promoting innovation and progress through technology transfer. Find more at https://humantechnopole.it

Open Targets
Open Targets is a pioneering public-private collaboration that aims to transform drug discovery by systematically improving the identification and prioritisation of drug targets and improving the success rate for developing new medicines. The consortium is a unique, pre-competitive partnership between companies and not-for-profit research institutes. The partners are GSK, Biogen, Takeda, Celgene, Sanofi, the Wellcome Sanger Institute and the EMBL’s European Bioinformatics Institute (EMBL-EBI). Open Targets combines the skills, knowledge and technologies of its partner organisations, offering a critical mass of expertise that does not exist in any single institution. Large-scale genomic experiments (Sanger Institute) and computational techniques (EMBL-EBI) developed in the public domain are blended with formal pharmaceutical R&D approaches to identify causal links between targets, pathways and diseases. This enables the partners to systematically identify drug targets, and prioritise them for further exploration. Find more at https://www.opentargets.org/

The Wellcome Sanger Institute
The Wellcome Sanger Institute is a world leader in genomics research. We apply and explore genomic technologies at scale to advance understanding of biology and improve health. Making discoveries not easily made elsewhere, our research delivers insights across health, disease, evolution and pathogen biology. We are open and collaborative; our data, results, tools, technologies and training are freely shared across the globe to advance science.

Funded by Wellcome, we have the freedom to think long-term and push the boundaries of genomics. We take on the challenges of applying our research to the real world, where we aim to bring benefit to people and society.

Find out more at www.sanger.ac.uk or follow us on Twitter, Instagram, Facebook, LinkedIn and on our Blog.

About Wellcome
Wellcome supports science to solve the urgent health challenges facing everyone. We support discovery research into life, health and wellbeing, and we’re taking on three worldwide health challenges: mental health, infectious disease and climate and health. https://wellcome.org/

END


[Attachments] See images for this press release:
Wellcome Sanger Institute: Cancer drug discovery accelerated as hundreds of overlooked targets prioritised Wellcome Sanger Institute: Cancer drug discovery accelerated as hundreds of overlooked targets prioritised 2

ELSE PRESS RELEASES FROM THIS DATE:

ChatGPT has read almost the whole internet. That hasn't solved its diversity issues

2024-01-11
AI language models are booming. The current frontrunner is ChatGPT, which can do everything from taking a bar exam, to creating an HR policy, to writing a movie script. But it and other models still can’t reason like a human. In this Q&A, Dr. Vered Shwartz (she/her), assistant professor in the UBC department of computer science, and masters student Mehar Bhatia (she/her) explain why reasoning could be the next step in AI—and why it’s important to train these models using diverse ...

First direct imaging of small noble gas clusters at room temperature

First direct imaging of small noble gas clusters at room temperature
2024-01-11
For the first time, scientists have succeeded in the stabilisation and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough, achieved by scientists at the University of Vienna in collaboration with colleagues at the University of Helsinki, was the confinement of noble gas atoms between two layers of graphene. This method overcomes the difficulty that noble gases do not form stable structures under experimental conditions ...

CD4+ T cell patterns linked to autoimmune disorders

CD4+ T cell patterns linked to autoimmune disorders
2024-01-11
Osaka, Japan – Much like ripples on the water can betray powerful currents below the surface, small changes in our bodies can sometimes be an indicator of a serious condition. Now, researchers from Japan say that cells in the blood may provide telltale signs of important immune dysfunction. In a study recently published in Cell Genomics, researchers from Osaka University have revealed that subtle changes in specific immune cell populations may signal the presence of an autoimmune disease. In autoimmune conditions, which affect up to 5% of the population, the body’s immune cells attack the body ...

A tiny tattoo for a tabby

A tiny tattoo for a tabby
2024-01-11
Tokyo, Japan – If you’ve ever taken a car trip through a rural area, you might already know that livestock, including cows and sheep, can be individually tracked using decidedly old-fashioned methods, such as ear tags or even branding marks. By contrast, many tech-savvy pet owners have opted to have their dog or cat “chipped” by having a radio frequency identification (RFID) permanently implanted under the skin. However, all these identification solutions leave something to be desired, as ear tags can become damaged or lost, while RFID chips require an invasive procedure to insert and specialized equipment to read. In a study recently published in Scientific ...

JMIR AI has passed the Scientific Quality Review by NLM for PMC

2024-01-11
JMIR Publications is pleased to announce that JMIR AI has passed the Scientific Quality Review by the US National Library of Medicine (NLM) for PubMed Central (PMC). This decision reflects the scientific and editorial quality of the journal. All articles published from 2022 onward will be found on PMC and PubMed after their technical evaluation. Launched in 2022, JMIR AI is a new journal that focuses on the applications of artificial intelligence in health settings. This includes contemporary developments as well as historical ...

Researchers use spinning metasurfaces to craft compact thermal imaging system

Researchers use spinning metasurfaces to craft compact thermal imaging system
2024-01-11
WASHINGTON — Researchers have developed a new technology that uses meta-optical devices to perform thermal imaging. The approach provides richer information about imaged objects, which could broaden the use of thermal imaging in fields such as autonomous navigation, security, thermography, medical imaging and remote sensing. “Our method overcomes the challenges of traditional spectral thermal imagers, which are often bulky and delicate due to their reliance on large filter wheels or interferometers,” said research team leader Zubin Jacob from ...

John E. Carlstrom wins 2024 Dannie Heineman Prize for Astrophysics

John E. Carlstrom wins 2024 Dannie Heineman Prize for Astrophysics
2024-01-11
WASHINGTON, Jan. 11, 2024 – The Heineman Foundation, American Institute of Physics, and American Astronomical Society are pleased to announce John E. Carlstrom as the winner of the 2024 Dannie Heineman Prize for Astrophysics. Carlstrom was selected “for pioneering work on microwave interferometry and his leading role in the development of the South Pole Telescope, leading to the observations of clusters of galaxies through the Sunyaev-Zeldovich effect, B-Mode polarization in the cosmic microwave background and strong evidence for a flat universe, all of which changed the field for generations to come.” “AIP congratulates ...

Intriguing insights uncovered for two rare heart muscle diseases

2024-01-11
PHILADELPHIA— Advancements in the study of two rare heart conditions—peripartum cardiomyopathy (PPCM), and dilated cardiomyopathy (DCM)—contributed by researchers at the Perelman School of Medicine at the University of Pennsylvania may serve as critical guides in future work toward developing therapies for the conditions. The lab of Zoltan Arany, MD, PhD, the Samuel Bellet Professor of Cardiology and a professor of Cell and Developmental Biology, published their findings this month in the New England Journal of Medicine (NEJM), adding to separate research they recently published in the Journal of Clinical ...

Study finds AI-driven eye exams increase screening rates for youth with diabetes

2024-01-11
FOR IMMEDIATE RELEASE A Johns Hopkins Children’s Center study of children and youth with diabetes concludes that so-called autonomous artificial intelligence (AI) diabetic eye exams significantly increase completion rates of screenings designed to prevent potentially blinding diabetes eye diseases (DED). During the exam, pictures are taken of the backs of the eyes without the need to dilate them, and AI is used to provide an immediate result.  The study noted that the AI-driven technology used in the exams may close “care gaps” among racial and ethnic minority youth with diabetes, populations with historically higher rates of DED and less access to or adherence ...

U.S. health costs related to chemicals in plastics reached $250 billion in 2018

2024-01-11
WASHINGTON—Endocrine-disrupting chemicals (EDCs) in plastics pose a serious threat to public health and cost the U.S. an estimated $250 billion in increased health care costs in 2018, according to new research published in the Journal of the Endocrine Society. Plastics contain many hazardous, endocrine-disrupting chemicals that leach and contaminate humans and the environment. These chemicals disturb the body’s hormone systems and can cause cancer, diabetes, reproductive disorders, neurological impairments of developing fetuses and children, and death. Potential options under discussion as part of a Global ...

LAST 30 PRESS RELEASES:

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

[Press-News.org] Wellcome Sanger Institute: Cancer drug discovery accelerated as hundreds of overlooked targets prioritised
The second generation of the Cancer Dependency Map uncovers 370 priority drug targets, with strong links to specific cancer types.