(Press-News.org) Researchers have revealed the mechanism of a drug shown to be effective in treating certain types of cancer, which targets a protein modification silencing the expression of multiple tumor suppressor genes. They also demonstrated in clinical trials the efficacy of the drug in reducing tumor growth in blood cancer. The findings could lead to longer-term treatments for the disease and therapies for other types of cancer with similar underlying causes.
A team of researchers from the University of Tokyo and their collaborators focused on therapies targeting H3K27me3, a modification on a DNA-packaging histone protein, which plays a large role in regulating gene expression. The modification occurs when methyl groups, each consisting of three hydrogen atoms bonded to a single carbon atom (CH3), are added to the protein in a process called methylation.
The modification, also referred to as being epigenetic (a heritable change in gene function that occurs without altering the sequence of the DNA), has been tied to the repression, or reducing the expression, of tumor suppressor genes, with the accumulation of the methylated histones around the genes.
Because of its effects on repressing genes, H3K27me3 is being targeted by therapies to correct some of the disordered gene expression observed in cancer cells. While this therapy is effective for some cancers, the mechanism of H3K27me3 therapies on tumor cells was not yet known.
The research team conducted a study characterizing the effects of H3K27me3 on cancer cells by treating patients who have adult T-cell leukemia/lymphoma (ATL), a rare type of blood cancer, with valemetostat. The drug prevents the methylation of histone H3 by inhibiting the histone-modifying enzymes EZH1 and EZH2, which increase H3K27 and have been found to be abnormal in cancers. Treating patients with valemetostat decreased H3K27me3 and the condensation of DNA, opening up several tumor-suppressor genes for expression in cancer cells.
“Before H3K27me3-inhibitor therapies were developed, no effective treatments for blood cancers with accumulated genetic abnormalities existed, and new treatments needed to be developed,” said Makoto Yamagishi, first author of the paper and associate professor at the Graduate School of Frontier Sciences at the University of Tokyo. “Once we established that these therapies were effective against some types of cancer, understanding the therapeutic mechanisms of these drugs became extremely important.”
The team established that valemetostat treatment decreased tumor size and produced a durable clinical response to therapy in the clinical trial of patients with ATL, an aggressive cancer with many genetic mutations. The patients were able to safely remain on valemetostat treatment for more than two years.
“In blood cancers with poor prognosis due to genetic abnormalities, epigenetic mechanisms mediated by methylated histones can be targeted therapeutically,” said Professor Kaoru Uchimaru, also of the Graduate School of Frontier Sciences and last author of the study. “Valemetostat can restore expression of many tumor suppressor genes and sustainably inhibit tumor cell growth.”
Characterizing the mechanism of valemetostat therapy in patients with ATL is a huge step forward for epigenetic cancer treatments that target the expression of genes in cancer cells. The team recognizes, however, that many challenges remain. Cancers can become resistant to H3K27me3-inhibitor therapies if patients are treated for long periods of time, allowing cancer to recur. In some cases, cancer cells had acquired new mutations that interfered with valemetostat’s effectiveness over time and reduced long-term patient response to the drug.
“EZH1/2 inhibitors are effective treatments, but a mechanism of resistance to long-term treatment has also been identified,” said Yamagishi. “Based on this mechanism of resistance, it is important to continue to improve treatment methods and develop combination therapies that provide longer-term therapeutic effects.”
###
Journal article:
Makoto Yamagishi, Yuta Kuze, Yutaka Suzuki, Kaoru Uchimaru et al., “Mechanisms of action and resistance in histone methylation-targeted therapy,” Nature: February 21, 2024, DOI: 10.1038/s41586-024-07103-x
Link: https://www.nature.com/articles/s41586-024-07103-x
Funding:
Japan Agency for Medical Research and Development (AMED), and MEXT | Japan Society for the Promotion of Science (JSPS)
Related links:
Graduate School of Frontier Sciences
Department of Computational Biology and Medical Sciences
Research contact:
Associate Professor Makoto Yamagishi
Graduate School of Frontier Sciences, The University of Tokyo
Email: myamagishi@edu.k.u-tokyo.ac.jp
Press contact:
Joseph Krisher
Public Relations Group, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp
About the University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on X (formerly Twitter) at @UTokyo_News_en
END
CHAPEL HILL, NC – UNC Lineberger Comprehensive Cancer Center has been selected as one of nine national research sites for the National Cancer Institute’s (NCI), part of the National Institutes of Health, newly launched Cancer Screening Research Network (CSRN), which will evaluate promising and emerging cancer screening technologies.
Supporting the Biden-Harris Administration’s Cancer Moonshot initiative, the CSRN will conduct large, multi-center cancer screening studies with diverse populations in a variety of healthcare settings. The studies are designed to identify ...
BUFFALO, N.Y. – The science is clear that movement is good for our bodies as we age. But just how much physical activity is beneficial for people over 60? A new study from the University at Buffalo provides an answer, and it’s not 10,000 steps per day.
In fact, the study — published Feb. 21 in JAMA Cardiology — of nearly 6,000 U.S. women aged 63-99 reports that, on average, 3,600 steps per day at a normal pace was associated with a 26% lower risk of developing heart failure.
The observational study from the Women’s Health Initiative ...
The National Institutes of Health (NIH) has launched a clinical trials network to evaluate emerging technologies for cancer screening. The Cancer Screening Research Network (CSRN) will support the Biden-Harris administration’s Cancer Moonshot℠ by investigating how to identify cancers earlier, when they may be easier to treat. Eight groups have received funding from the National Cancer Institute (NCI), part of NIH, to carry out the initial activities of the network.
“There are many cancers we still cannot reliably ...
WASHINGTON (Feb. 21, 2024) – Painting a sobering picture, a research team led by Children’s National Hospital culled years of data demonstrating that maternal mental illness is an under-recognized contributor to the death of new mothers. They are calling for urgent action to address this public health crisis in the latest edition of JAMA Psychiatry.
Backed by dozens of peer-reviewed studies and health policy sources, the journal’s special communication comes as maternal mortality soars ...
Researchers from IOCB Prague and Ghent University have been working on improving the properties of gelatin-based materials, thereby expanding the possibilities of their use mainly in medicine. In a paper published in ACS Applied Engineering Materials, they have presented 3D-printable materials that can be easily monitored using an X-ray machine or through computed tomography (CT).
Gelatin-based materials have been a hot topic of research in the last ten years because they are straightforward to produce, non-toxic, inexpensive, ...
In a significant advancement for next-generation semiconductors, a collaborative research team, led by Professor Kyoung-Duck Park and Mingu Kang in the Department of Physics at POSTECH, Professor Yong Doug Suh in the Department of Chemistry at UNIST, who concurrently holds the position of Associate Director at the IBS Center for Multidimensional Carbon Materials (CMCM), and Professor Hyun Seok Lee in the Department of Physics at Chungbuk National University, has made groundbreaking discoveries in the field of two-dimensional (2D) semiconductors. Their findings, published in Nano Letters, shed light on the generation and control of trions, providing ...
High-dose pressurized oxygen can stress out old immune cells, leaving behind a younger, better functioning immune system. It helped with acute COVID, and now Anders Kjellberg is testing the method for post-covid as well.
Hyperbaric oxygen therapy, giving patients 100 percent oxygen at a pressure corresponding to 10-20 meters below sea level, has been around for almost 100 years. But the method lacks modern evidence from clinical studies, which also means that there is a lack of knowledge about dosage, all patients receive the same dose.
"When I started my research, I wanted to find out how the treatment should be dosed to different patients," says ...
A groundbreaking research breakthrough in solar energy has propelled the development of the world’s most efficient quantum dot (QD) solar cell, marking a significant leap towards the commercialization of next-generation solar cells. This cutting-edge QD solution and device have demonstrated exceptional performance, retaining their efficiency even after long-term storage. Led by Professor Sung-Yeon Jang from the School of Energy and Chemical Engineering at UNIST, a team of researchers has unveiled ...
A global team of researchers and industry collaborators led by RMIT University has invented recyclable ‘water batteries’ that won’t catch fire or explode.
Lithium-ion energy storage dominates the market due to its technological maturity, but its suitability for large-scale grid energy storage is limited by safety concerns with the volatile materials inside.
Lead researcher Distinguished Professor Tianyi Ma said their batteries were at the cutting edge of an emerging field of aqueous energy storage devices, with breakthroughs that significantly improve the technology’s performance and lifespan.
“What ...
WASHINGTON—Health care providers who treat diabetes need to think beyond the clinical numbers, such as solely focusing on a person’s glucose goals. Taking the patient experience into account can improve the quality of care and facilitate attainment of treatment goals, according to a new position statement published in the Endocrine Society’s Journal of Clinical Endocrinology & Metabolism.
The position statement reflects the consensus of two virtual roundtables the Endocrine Society held in 2022. Participants ...