PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Caltech-led team creates damage-tolerant metallic glass

Amorphous palladium-based alloy demonstrates unprecedented level of combined toughness and strength; could be of use in biomedical implants

Caltech-led team creates damage-tolerant metallic glass
2011-01-13
(Press-News.org) PASADENA, Calif.—Glass is inherently strong, but when it cracks or otherwise fails, it proves brittle, shattering almost immediately. Steel and other metal alloys tend to be tough—they resist shattering—but are also relatively weak; they permanently deform and fail easily.

The ideal material, says Marios Demetriou, a senior research fellow at the California Institute of Technology (Caltech), has the advantage of being both strong and tough—a combination called damage tolerance, which is more difficult to come by than the layperson might think. "Strength and toughness are actually very different, almost mutually exclusive," he explains. "Generally, materials that are tough are also weak; those that are strong, are brittle."

And yet, Demetriou—along with William Johnson, Caltech's Ruben F. and Donna Mettler Professor of Engineering and Applied Science, and their colleagues—report in a recent issue of the journal Nature Materials that they have developed just such a material. Their new alloy—a combination of the noble metal palladium, a small fraction of silver, and a mixture of other metalloids—has shown itself in tests to have a combination of strength and toughness at a level that has not previously been seen in any other material.

"Our study demonstrates for the first time that this class of materials, the metallic glasses, has the capacity to become the toughest and strongest ever known," Demetriou says. Indeed, the researchers write in their paper, these materials allow for "pushing the envelope of damage tolerance accessible to a structural metal."

What gives metallic glasses their unusual qualities is the fact that they are made of metals—with the inherent toughness that comes with that class of material—but have the internal structure of glass, and thus its strength and hardness. (Despite its name, it is this internal structure that is the only glasslike thing about metallic glass: the material is not transparent, Demetriou notes, and is both optically and electronically like metal.)

The problem with trying to increase strength in ordinary metals is that their atoms are organized in a crystal lattice, Demetriou explains. "And whenever you try to make something as perfect as a crystal, inevitably you will create defects," he says. Those defects, under stress, become mobile, and other atoms move easily around them, producing permanent deformations. While this rearrangement around defects results in an ability to block or cap off an advancing crack, producing toughness, it also limits the strength of the material.

On the other hand, glass has an amorphous structure, its atoms scattered about without a specific discernible pattern. In metallic glasses—also called amorphous metals because of their structure—this results in an absence of the extended defects found in crystalline metals. The actual defects in glasses are generally much smaller in size and only become active when exposed to much higher stresses, resulting in higher strengths. However, this also means that the strategy used in ordinary metals to stop a crack from growing ever longer—the easy and rapid rearrangement of the atoms around defects into a sort of cap at the leading edge of a crack—is not available.

"When defects in the amorphous structure become active under stress, they coalesce into slim bands, called shear bands, that rapidly extend and propagate through the material," says Demetriou. "And when these shear bands evolve into cracks, the material shatters."

It was this tendency to shatter that was thought to be one of the limiting factors of metallic glasses, which were first developed in the 1960s at Caltech. The assumption was that, despite their many benefits, they could never match or exceed the toughness of the toughest steels.

But what the Caltech scientists found, much to their surprise, was that creating more of a problem could actually solve the problem. In the new palladium alloy, so many shear bands form when the material is put under stress that it "actually leads to higher toughness, because the bands interact and form networks that block crack propagation," Demetriou explains. In other words, the number of shear bands that form, intersect, and multiply at the tip of an evolved crack is so high that the crack is blocked and cannot travel very far. In essence, then, the shear bands act as a shield, preventing shattering. Thus, the palladium glass acts very much like the toughest of steels, using an analogous blocking mechanism of arresting cracks.

"And," Demetriou adds, "this high toughness does not come at the expense of strength. This material has both strength and toughness, which is why it falls so far outside what's previously been possible. That's why this material is so special."

The palladium alloy described in the paper could soon be of use in biomedical implants, says Demetriou. "One example is dental implants," Demetriou says. "Many noble-metal alloys, including palladium, are currently used in dentistry due to their chemical inertness and resistance to oxidation, tarnish, and corrosion. Owing to its superior damage tolerance, the present palladium glass can be thought of as a superior alternative to conventional palladium dental alloys. Plus, the absence of any elements considered toxic or allergenic—nickel, copper, aluminum—from the composition of this alloy will likely promote good biological compatibility."

The class of such tough metallic glasses potentially could be used in other structural applications like automotive and aerospace components, the team says. But this particular alloy is unlikely to be part of any large-scale manufacturing process. "It's prohibitively expensive," says Demetriou. "The cost is much too high for any large-scale, widespread use."

Still, he notes, the fact that it was created at all, with these particular properties, tells scientists that this level of toughness and strength is well within reach. Now it's just a matter of figuring out specifically what gives this alloy its unique damage tolerance, and how that can be replicated with an alloy containing less-expensive, less-precious metals.



INFORMATION:



In addition to Demetriou and Johnson, the other authors on the Nature Materials paper, "A Damage-Tolerant Glass," are Caltech graduate student Glenn Garrett, visitor in applied physics and materials science Joseph Schramm, and lecturer in applied physics and materials science Douglas Hofmann; Robert Ritchie from the Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley; and Maximilien Launey, formerly of LBNL and now at the Cordis Corporation. Their work was supported by the National Science Foundation and the U.S. Department of Energy.


[Attachments] See images for this press release:
Caltech-led team creates damage-tolerant metallic glass

ELSE PRESS RELEASES FROM THIS DATE:

23andMe presents top 10 most interesting genetic findings of 2010

23andMe presents top 10 most interesting genetic findings of 2010
2011-01-13
MOUNTAIN VIEW, CA – January 11, 2011 – 23andMe has released its first annual list of what it felt to be the 10 most interesting and significant genetic findings in 2010, as part of an ongoing journey to understand the role of genetics in personal health and human development. "Our understanding of the human genome is accelerating at a phenomenal rate," stated Anne Wojcicki, co-founder and CEO of 23andMe. "Below we have compiled a list of our top ten favorite genetic discoveries from 2010. We look forward to exploring more discoveries in 2011." Customers of 23andMe ...

New method will triple amount of genetic information from newborn blood spot screenings

2011-01-13
Grand Rapids, Mich. (January 12, 2011) – Van Andel Research Institute (VARI) researchers have developed a method that can yield more information from archived newborn blood that has implications for a vast array of research, including population health studies and answering questions about diseases in infants and children. In a recent study published in Pathology International, VARI researchers detected approximately 9,000 activated genes in samples from adult blood spots on Guthrie cards that had been archived anywhere from six months to three years. Researchers say ...

Natural dissolved organic matter plays dual role in cycling of mercury

2011-01-13
Nature has a bit of a Jekyll and Hyde relationship with mercury, but researchers at the Department of Energy's Oak Ridge National Laboratory have made a discovery that ultimately could help explain the split personality. While scientists have known that microbes in aquatic environments make methylmercury, a more toxic form of mercury that accumulates in fish, they also know that nature and other types of bacteria can transform methylmercury to less toxic forms. What they haven't completely understood are the mechanisms that cause these transformations in anoxic environments ...

Robotic surgery of 'tremendous benefit' to patients, say JGH researchers

2011-01-13
This press release is available in French. Robot-assisted surgery dramatically improves outcomes in patients with uterine, endometrial, and cervical cancer, said researchers at the Jewish General Hospital's Lady Davis Institute for Medical Research in Montreal. Moreover, because of fewer post-operative complications and shorter hospital stays, robotic procedures also cost less. These results were published in late 2010 in a series of studies in The Journal of Robotic Surgery and The International Journal of Gynecological Cancer. To date, adoption of robotic surgery ...

Astronomers identify most distant galaxy cluster

Astronomers identify most distant galaxy cluster
2011-01-13
RIVERSIDE, Calif. — Bahram Mobasher, a professor of physics and astronomy at the University of California, Riverside, is a member of an international team of astronomers that has uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based ...

Taking the pulse of a black hole system

Taking the pulse of a black hole system
2011-01-13
Using two NASA X-ray satellites, astronomers have discovered what drives the "heartbeats" seen in the light from an unusual black hole system. These results give new insight into the ways that black holes can regulate their intake and severely curtail their growth. This study examined GRS 1915+105 (GRS 1915 for short), a binary system in the Milky Way galaxy containing a black hole about 14 times more massive than the Sun that is feeding off material from a companion star. As this material falls towards the black hole, it forms a swirling disk that emits X-rays. The black ...

New guidelines for preventing falls in the elderly include: start tai chi, cut-back on meds

2011-01-13
In the first update of the American Geriatrics Society and the British Geriatric Society's guidelines on preventing falls in older persons since 2001, they now recommend that all interventions for preventing falls should include an exercise component and that a number of new assessments should be used, including; feet and footwear, fear of falling, and ability to carry out daily living activities. The guidelines, a summary of which are published today in the Journal of the American Geriatrics Society, also state that fall screening and prevention should be a part of all ...

TGen and Genomic Health Inc. discover genes affecting cancer drug

2011-01-13
PHOENIX, Ariz. — Jan. 13, 2011 — Genomic research could help doctors better target a drug widely used to treat colorectal cancer patients, according to a study by Genomic Health Inc. (Nasdaq: GHDX) and the Translational Genomics Research Institute (TGen). The drug, oxaliplatin, is widely used in colon cancer. It is used in early disease, following surgery in those cancers that are likely to recur. It is also used in advanced disease to slow progression of the cancer where it has spread to other parts of the body. However, a significant number of patients experience ...

Lack of Strong Consumer Brands Jeopardizes the Asian Century

2011-01-13
The development and growth of much of Asia over the past two decades has been nothing short of spectacular. Yet, there remains a huge void of great brands (Japan aside) emerging from this region - Surveys repeatedly confirm that Asian consumers overwhelmingly prefer great Western brands to home-grown ones: given the choice, they will drink Coke, wear Nike shoes, and drive a BMW every time. This begets the question: How effective will be the current transition of the world order from West to East in the absence of great Asian brands? And will that momentous transition remain ...

iFunia Announces MOD Converter for the Mac App Store

2011-01-13
iFunia, a professional developer of Mac multimedia software, is pleased to announce that their flagship product iFunia MOD Converter for Mac is currently available on the Mac App Store. iFunia MOD Converter is the multifunctional tool which helps camcorder enthusiasts easily convert MOD,TOD files recorded by most popular digital camcorder to all popular video and audio formats for use on Mac, iPad, iPhone or iPod, or Apple TV. "With more than 1,000 free and paid apps, the Mac App Store brings the revolutionary App Store experience to the Mac, and we are thrilled to have ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] Caltech-led team creates damage-tolerant metallic glass
Amorphous palladium-based alloy demonstrates unprecedented level of combined toughness and strength; could be of use in biomedical implants