(Press-News.org) MINNEAPOLIS/ST. PAUL (04/26/2024) — University of Minnesota Twin Cities researchers have constructed a robot that uses machine learning to fully automate a complicated microinjection process used in genetic research.
In their experiments, the researchers were able to use this automated robot to manipulate the genetics of multicellular organisms, including fruit fly and zebrafish embryos. The technology will save labs time and money while enabling them to more easily conduct new, large-scale genetic experiments that were not possible previously using manual techniques
The research is featured on the cover of the April 2024 issue of GENETICS, a peer-reviewed, open access, scientific journal. The work was co-led by two University of Minnesota mechanical engineering graduate students Andrew Alegria and Amey Joshi. The team is also working to commercialize this technology to make it widely available through the University of Minnesota start-up company, Objective Biotechnology.
Microinjection is a method for introducing cells, genetic material, or other agents directly into embryos, cells, or tissues using a very fine pipette. The researchers have trained the robot to detect embryos that are one-hundredth the size of a grain of rice. After detection, the machine can calculate a path and automate the process of the injections.
“This new process is more robust and reproducible than manual injections,” said Suhasa Kodandaramaiah, a University of Minnesota mechanical engineering associate professor and senior author of the study. “With this model, individual laboratories will be able to think of new experiments that you couldn’t do without this type of technology.”
Typically, this type of research requires highly skilled technicians to perform the microinjection, which many laboratories do not have. This new technology could expand the ability to perform large experiments in labs, while reducing time and costs.
“This is very exciting for the world of genetics. Writing and reading DNA have drastically improved in recent years, but having this technology will increase our ability to perform large-scale genetic experiments in a wide range of organisms,” said Daryl Gohl, a co-author of the study, the group leader of the University of Minnesota Genomics Center’s Innovation Lab and research assistant professor in the Department of Genetics, Cell Biology, and Development.
Not only can this technology be used in genetic experiments, but it can also help to preserve endangered species through cryopreservation, a preservation technique conducted at ultra-low temperatures.
“You can use this robot to inject nanoparticles into cells and tissues that helps in cryopreservation and in the process of rewarming afterwards,” Kodandaramaiah explained.
Other team members highlighted other applications for the technology that could have even more impact.
“We hope that this technology could eventually be used for in vitro fertilization, where you could detect those eggs on the microscale level,” said Andrew Alegria, co-lead author on the paper and University of Minnesota mechanical engineering graduate research assistant in the Biosensing and Biorobotics Lab.
In addition to Kodandaramaiah, Gohl, Alegria, and Joshi, the team included several researchers from the University of Minnesota’s College of Science and Engineering and the University of Minnesota Genomics Center’s Innovation Lab. The team recently won the University’s “Walleye Tank” life science competition. This life science pitch competition provides education and promotional opportunities for emerging and established medical and life science companies.
This research was completed in collaboration with the Engineering Research Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio) and the University of Minnesota Zebrafish Core.
The paper was funded by the National Institute of Health, Minnesota Sea Grant, and the National Science Foundation. Additional support was provided by the University of Minnesota Diversity of Views and Experiences (DOVE) fellowship and Minnesota's Discovery, Research, and Innovation Economy (MnDRIVE) fellowship from the University of Minnesota Informatics Institute (UMII).
To read the entire research paper titled, “High-throughput genetic manipulation of multicellular organisms using a machine-vision guided embryonic microinjection robot,” visit the GENETICS website.
END
Automated machine learning robot unlocks new potential for genetics research
This technology will save labs time and money while enabling large-scale experiments.
2024-04-26
ELSE PRESS RELEASES FROM THIS DATE:
University of Toronto scientists appointed as GSK chairs will advance drug delivery research and vaccine education tools for healthcare professionals
2024-04-26
The University of Toronto’s Leslie Dan Faculty of Pharmacy has announced the appointments of two leading scientists as endowed GSK research chairs. These appointments represent the collaborative efforts between the two organizations to advance the field of pharmacy and drive positive change in patient care.
Anna Tadio, professor at the Leslie Dan Faculty of Pharmacy, University of Toronto, and senior associate scientist at The Hospital for Sick Children (SickKids) is the inaugural holder of the GSK Chair in Vaccine Education and Practice-Oriented Tools.
Bowen Li, ...
Air pollution and depression linked with heart disease deaths in middle-aged adults
2024-04-26
Athens, Greece – 26 April 2024: A study in more than 3,000 US counties, with 315 million residents, has suggested that air pollution is linked with stress and depression, putting under-65-year-olds at increased risk of dying from cardiovascular disease. The research is presented today at ESC Preventive Cardiology 2024, a scientific congress of the European Society of Cardiology (ESC).1
“Our study indicates that the air we breathe affects our mental well-being, which in turn impacts heart health,” ...
More efficient molecular motor widens potential applications
2024-04-26
Light-driven molecular motors were first developed nearly 25 years ago at the University of Groningen, the Netherlands. This resulted in a shared Nobel Prize for Chemistry for Professor Ben Feringa in 2016. However, making these motors do actual work proved to be a challenge. A new paper from the Feringa lab, published in Nature Chemistry on 26 April, describes a combination of improvements that brings real-life applications closer.
First author Jinyu Sheng, now a postdoctoral researcher at the Institute of Science and Technology Austria (ISTA), adapted a ‘first generation’ light-driven molecular ...
Robotic nerve ‘cuffs’ could help treat a range of neurological conditions
2024-04-26
Researchers have developed tiny, flexible devices that can wrap around individual nerve fibres without damaging them.
The researchers, from the University of Cambridge, combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.
Current tools for interfacing with the peripheral nerves – the 43 pairs of motor and sensory nerves that connect the brain and the spinal cord – are outdated, bulky and carry a high risk of nerve injury. However, the robotic nerve ‘cuffs’ ...
Researchers identify targets in the brain to modulate heart rate and treat depressive disorders
2024-04-26
Study led by Brigham investigators suggests heart rate may be a useful tool to determine where to stimulate the brains of individuals with depressive disorders when brain scans aren’t available
A new study by researchers at Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, suggests a common brain network exists between heart rate deceleration and depression. By evaluating data from 14 people with no depression symptoms, the team found stimulating some parts of the brain linked to depression with transcranial magnetic stimulation ...
Findings of large-scale study on 572 Asian families supports gene-directed management of BRCA1 and BRCA2 gene carriers in Singapore
2024-04-26
Singapore, 26 April 2024 – A team of clinician-scientists and scientists from the University of Nottingham (Malaysia campus), National Cancer Centre Singapore (NCCS), Cancer Research Malaysia, Nanyang Technological University, Singapore (NTU Singapore), University of Malaya, University of Cambridge, A*STAR’s Genome Institute of Singapore (GIS) and other institutions, have conducted the largest study done to date of BRCA1 and BRCA2 (BReast CAncer Gene 1 and 2) carriers in an Asian population and refined breast and ovarian cancer risk estimates for this population. The findings, ...
Many children with symptoms of brain injuries and concussions are missing out on vital checks, national US study finds
2024-04-26
Almost a quarter of US children with symptoms of a brain injury or concussion are not checked for the condition, with younger children particularly likely to be overlooked, a new national study finds.
The peer-reviewed US research, which is published in the journal Brain Injury, also shows that children with symptoms or a diagnosis of a brain injury or concussion were more likely to have symptoms of depression than other youngsters. They also found it harder to make friends.
Routine checks would help ensure such children receive the care that they need, says ...
Genetic hope in fight against devastating wheat disease
2024-04-26
Fungal disease Fusarium head blight (FHB) is on the rise due to increasingly humid conditions induced by climate change during the wheat growing season, but a fundamental discovery by University of Adelaide researchers could help reduce its economic harm.
While some types of wheat are resistant to FHB thanks to the action of the TaHRC gene at the Fhb1 locus, how this gene functions in wheat cells was unknown until now.
Collaborating with Nanjing Agriculture University, the University of Adelaide research team has shown TaHRC works in the nucleus of wheat cells, ...
Mutualism, from biology to organic chemistry?
2024-04-26
Heteroatom tin compounds (SSn, OSn, NSn, PSn) composed of heteroatoms S, O, N, P and tin atoms have attracted intense attention due to their wide applications in organic synthesis and pharmaceutical fields. The current methods for synthesis of such compounds, such as metathesis reactions, addition reactions, and free radical reactions, exhibit drawbacks including narrow substrate scope and harsh conditions. Therefore, it is important to develop efficient synthetic systems to construct heteroatom-tin bond.
Tetrahydroquinoline, as an important ...
POSTECH Professor Yong-Young Noh resolves two decades of oxide semiconductor challenges, which Is published in prestigious journal Nature
2024-04-26
Professor Yong-Young Noh from the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH), along with Dr. Ao Liu and Dr. Huihui Zhu, postdoctoral researchers from the Department of Chemical Engineering at POSTECH and now professors at the University of Electronic Science and Technology of China, Dr. Yong-Sung Kim from Korea Research Institute of Standards and Science, and Dr. Min Gyu Kim from the Pohang Accelerator Laboratory, collaborated on the development of a tellurium-selenium composite oxide semiconductor material. Their efforts led to the successful creation of a high-performance and highly ...
LAST 30 PRESS RELEASES:
Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution
“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot
Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows
USC researchers observe mice may have a form of first aid
VUMC to develop AI technology for therapeutic antibody discovery
Unlocking the hidden proteome: The role of coding circular RNA in cancer
Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC
Study reveals widening heart disease disparities in the US
The role of ubiquitination in cancer stem cell regulation
New insights into LSD1: a key regulator in disease pathogenesis
Vanderbilt lung transplant establishes new record
Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine
Metasurface technology offers a compact way to generate multiphoton entanglement
Effort seeks to increase cancer-gene testing in primary care
Acoustofluidics-based method facilitates intracellular nanoparticle delivery
Sulfur bacteria team up to break down organic substances in the seabed
Stretching spider silk makes it stronger
Earth's orbital rhythms link timing of giant eruptions and climate change
Ammonia build-up kills liver cells but can be prevented using existing drug
New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock
Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza
New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance
nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip
Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure
Fluoride in drinking water is associated with impaired childhood cognition
New composite structure boosts polypropylene’s low-temperature toughness
While most Americans strongly support civics education in schools, partisan divide on DEI policies and free speech on college campuses remains
Revolutionizing surface science: Visualization of local dielectric properties of surfaces
LearningEMS: A new framework for electric vehicle energy management
Nearly half of popular tropical plant group related to birds-of-paradise and bananas are threatened with extinction
[Press-News.org] Automated machine learning robot unlocks new potential for genetics researchThis technology will save labs time and money while enabling large-scale experiments.