PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Desert ants use the polarity of the geomagnetic field for navigation

Underlying mechanism for magnetoreception probably differs from that in other insects

Desert ants use the polarity of the geomagnetic field for navigation
2024-12-06
(Press-News.org)

Desert ants of the Cataglyphis nodus species use the Earth's magnetic field for spatial orientation, but these tiny insects rely on a different component of the field than other insects, a research team led by Dr Pauline Fleischmann from the University of Oldenburg, Germany, reports in the journal Current Biology. As the team explains in its paper, this suggests that they also use a different mechanism for magnetoreception than most insects studied to date, including, for example, the famous monarch butterflies. The researchers suspect that magnetoreception in these desert ants is based on a mechanism involving tiny particles of the iron oxide mineral magnetite or other magnetic particles.

How exactly magnetoreception works in animals, and what physical mechanism it is based on is still the subject of lively debate among scientists. One hypothesis under discussion is a light-dependent quantum effect known as the radical-pair mechanism. Small songbirds and possibly also insects such as monarch butterflies are thought to use this mechanism. The Collaborative Research Centre "Magnetoreception and Navigation in Vertebrates" led by biologist Prof. Dr. Henrik Mouritsen at the University of Oldenburg has gathered substantial evidence supporting this hypothesis.

Another hypothesis is that in some animals magnetoreception is based on tiny magnetic particles in sensory or nerve cells that point to the magnetic North, in a similar way to a compass needle. There is now considerable evidence that both forms of magnetoreception occur in nature. Pigeons, bats and sea turtles, for example, appear to sense the geomagnetic field via magnetic particles.

Behavioural experiments can distinguish between different mechanisms of magnetoreception

Since the proposed mechanisms for magnetoreception are based on different physical principles, behavioural experiments can be designed to determine which mechanism is used by which animals. The scientists part from the premise that animals with a particle-based magnetic sense are sensitive to the north-south direction of the geomagnetic field, in other words its "polarity", whereas those that rely on the radical-pair mechanism perceive the inclination, i.e. the angle between the geomagnetic field lines and the Earth's surface.

To gain more insights into how the magnetic sense of desert ants functions, Fleischmann, together with Dr Robin Grob (now at the Norwegian University of Science and Technology, Trondheim, Norway), Johanna Wegmann and Prof. Dr. Wolfgang Rössler from the University of Würzburg, Germany, investigated which component of the Earth's magnetic field these insects are able to detect: the inclination or the polarity. In 2018, while Fleischmann was doing her PhD at the University of Würzburg, the research team discovered that desert ants possess a magnetic sense. She has been a Research Fellow in the Oldenburg CRC since 2022.

In the current study, the researchers exposed ants from a colony in Greece to various manipulated magnetic fields. For this, they set up Helmholtz coils above the entrance of the nest and guided ants that emerged from the nest through a tunnel to an experimental platform at the centre of the coils where they were then filmed while performing their "learning walks" – a behaviour that desert ants display when they leave their nest for the very first time. Fleischmann had discovered while completing her doctoral project that the ants use the Earth's magnetic field to memorise the direction of the nest entrance during these learning walks: they repeatedly interrupt their forward movement to stop and look in the direction of the nest entrance. The researchers suspect that the ants are using the magnetic field to train their visual memory. The results of a study on the ants' brain development which the team recently published in the scientific journal PNAS appear to confirm this.

Changing the inclination had no effect on the ants' behaviour

In the current study, the researchers exposed the ants to artificial magnetic fields that pointed in a different direction to the Earth's natural magnetic field. The team found that if they only changed the vertical component of the field, the inclination, this had no effect on the direction of the ants' gaze: they continued to look towards the location of the nest entrance during their learning walks. However, if the polarity of the field, i.e. the north-south axis, was rotated by 180 degrees, the ants surmised that the nest entrance was at a completely different location.

Based on these results, the researchers conclude that unlike monarch butterflies or songbirds, ants do not use the inclination of the geomagnetic field, which is probably more useful for long-distance migration. Instead, they rely on the polarity of the field to navigate during their learning walks. "This type of compass is particularly useful for navigation over comparatively short distances," Fleischmann emphasises.

Desert ants have long been known to have excellent navigational skills: they live in the featureless salt pans of the North African Sahara or in pine forests in Greece where there are few landmarks to use for orientation, and they may move hundreds of metres away from their nest to forage for food. When they leave the nest, they move in a zig-zag pattern, but once they have found food they return to the nest entrance in a straight line. The discovery that ants, which along with bees and wasps belong to the Hymenoptera order, use a different mechanism for magnetoreception other insect species such as butterflies or cockroaches also opens up new avenues for studying the evolution of this special form of sensory perception in the animal kingdom, Fleischmann observes.

END


[Attachments] See images for this press release:
Desert ants use the polarity of the geomagnetic field for navigation Desert ants use the polarity of the geomagnetic field for navigation 2 Desert ants use the polarity of the geomagnetic field for navigation 3

ELSE PRESS RELEASES FROM THIS DATE:

A breakthrough tool for detecting problems during protein synthesis

A breakthrough tool for detecting problems during protein synthesis
2024-12-06
In eukaryotic cells—found in animals, plants, and fungi—protein synthesis involves more than the simple assembly of amino acids in ribosomes. Nearly one-third of all human proteins must be transported to the endoplasmic reticulum (ER) during or shortly after their synthesis. In the ER, these proteins undergo crucial folding and modifications, including the formation of disulfide (S–S) bonds, which are vital for their structure and function. Disruptions in protein translocation to the ER or disulfide bond formation underlie several diseases, and understanding the mechanisms that govern these processes is essential in biology and medical ...

Rapid ascend: COMMTR's three-year journey to SCIE and SSCI inclusion

Rapid ascend: COMMTRs three-year journey to SCIE and SSCI inclusion
2024-12-06
We are thrilled to announce that our esteemed academic journal, Communications in Transportation Research (COMMTR), has been officially included in both the Science Citation Index Expanded (SCIE) and the Social Sciences Citation Index (SSCI) by Web of Science, a leading global provider of scientific and scholarly research information.   In the Journal Citation Reports (JCR) released in June 2024, COMMTR received its first Impact Factor of 12.5, ranking it 1st among 58 journals in the TRANSPORTATION category and 3rd among 72 journals in the TRANSPORTATION SCIENCE & TECHNOLOGY category. The dual inclusion in SCIE and SSCI signifies that the journal has ...

Getting a grip on health norms

2024-12-06
Convenient, safe, and non-invasive, ‘handgrip strength’ is a reliable predictor for age-related disease and disability.   Now, a groundbreaking study led by the University of South Australia and conducted in collaboration with 140 authors across the globe, has created the world’s largest and most geographically comprehensive international norms for handgrip strength, enabling global peer-comparison, health screening and surveillance across the adult lifespan.   Published in The Journal of Sport and Health Science ...

Living in a disadvantaged neighborhood linked to higher blood pressure and lower cognition 

2024-12-06
WINSTON-SALEM, N.C. – Dec. 6, 2024 – New research from Wake Forest University School of Medicine suggests that living in a disadvantaged neighborhood is associated with higher blood pressure and lower cognitive scores, even among people who do not have an existing diagnosis of mild cognitive impairment.  The study appears online today in Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, a journal of the Alzheimer’s Association.  “We know that inequitable access to education, employment, income and housing increases the risk for Alzheimer’s disease and related dementias,” said James R. Bateman, M.D., ...

Bird-inspired drone can jump for take-off

Bird-inspired drone can jump for take-off
2024-12-06
“As the crow flies” is a common idiom referring to the shortest distance between two points, but the Laboratory of Intelligent Systems (LIS), led by Dario Floreano, in EPFL’s School of Engineering has taken the phrase literally with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments). Designed based on perching birds like ravens and crows that frequently switch between air and land, the multifunctional robotic legs allow it to take off autonomously in environments previously inaccessible to winged drones. “Birds were the ...

AI beats experts in predicting future quality of “mini-organs”

AI beats experts in predicting future quality of “mini-organs”
2024-12-06
Fukuoka, Japan – Organoids—miniature, lab-grown tissues that mimic organ function and structure—are transforming biomedical research. They promise breakthroughs in personalized transplants, improved modeling of diseases like Alzheimer’s and cancer, and more precise insights into the effects of medical drugs. Now, researchers from Kyushu University and Nagoya University in Japan have developed a model that uses artificial intelligence (AI) to predict organoid development at an early stage. The model, which is faster and more accurate than expert researchers, ...

A new biodegradable material to replace certain microplastics

2024-12-06
CAMBRIDGE, MA -- Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products. In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down into harmless sugars and amino acids. “One way to mitigate the microplastics problem is to figure out how to clean up existing ...

Speaking crystal: AI learns language of atom arrangements in solids

2024-12-06
A new artificial intelligence model that can predict how atoms arrange themselves in crystal structures could lead to faster discovery of new materials for everything from solar panels to computer chips. The technology, called CrystaLLM, was developed by researchers at the University of Reading and University College London. It works similarly to AI chatbots, by learning the "language" of crystals by studying millions of existing crystal structures. Published today (Friday, 6 December) in Nature Communications, the new system will be distributed to the scientific community to aid the discovery of new materials. Dr ...

3D scans of giant hailstones reveal surprising discoveries that could help predict future storms

3D scans of giant hailstones reveal surprising discoveries that could help predict future storms
2024-12-06
Hailstones are formed during thunderstorms, when raindrops are propelled into very cold parts of a cloud, where they freeze. Once the particles are heavy enough, gravity pulls them back towards Earth. As the plummet, they grow into hailstones, which can cause injury to people and significant damage to homes and cars. Scientists have been studying how hailstones grow since the 1960s but doing so meant breaking them in the process. To better understand the anatomy and growth of hailstones, researchers in Catalonia have used computed tomography (CT) scans to examine the giant hailstones that hit the north-east of the Iberian Peninsula during an exceptionally strong thunderstorm ...

Developing highly efficient recovery materials for precious 'rare earth metals' and improving resource circulation for digital infrastructure

Developing highly efficient recovery materials for precious rare earth metals and improving resource circulation for digital infrastructure
2024-12-06
Korea imports 95% of its core minerals such as lithium, nickel, and rare earths. Rare earths, in particular, are characterized by chemical, electrical, magnetic, and luminescent properties that can be achieved by adding only a small amount, and their use has recently increased significantly as core materials in the eco-friendly automobile and renewable energy industries. China, a major producer of rare metals, is controlling the supply through its strategy of weaponizing resources, putting great pressure on the domestic industry. Dr. Jae-Woo Choi and his team at the Center for Water Cycle Research at the Korea Institute of Science ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] Desert ants use the polarity of the geomagnetic field for navigation
Underlying mechanism for magnetoreception probably differs from that in other insects