(Press-News.org) In the holiday movie The Grinch, makeup artists are reported to have spent several hours each day encasing Jim Carrey’s face with prosthetics to create the iconic grumpy, green-furred creature. Such elaborate prosthetics, often made possible by materials like silicone rubbers, may have now found an unexpected yet beneficial biomedical engineering application, according to a new study from Texas A&M University.
Published in the journal Scientific Reports, researchers have created realistic, skin-like replicas made of Ecoflex, a type of silicone rubber that can potentially serve as a platform to evaluate risks of bacterial infections from intravenous catheters and test wearable sensors, among other biomedical applications. The study found that EcoFlex-based skin replicas can be engineered to mimic actual skin textures, wettability, and elasticity, simulating the conditions where bacteria grow and adhere.
“We think that the material holds tremendous promise for studying infections at the insertion site due to bacteria that are naturally occurring on the skin,” said Majed Othman Althumayri, a graduate student in the Texas A&M Department of Biomedical Engineering and primary author of the paper. “Our goal was to create a skin-like material with ingredients that can be purchased off the shelf. Ecoflex is not just easy to use, it can be cured quickly with minimum additional steps, making it very convenient.”
There are roughly a million bacteria per square centimeter of human skin. The most common of them is Staphylococcus, particularly the species Staphylococcus epidermidis, which is considered a typical resident of the skin microbiome. Infections often happen when there is a cut, break or wound on the skin, allowing the bacteria to enter the bloodstream. In fact, a relatively common infection in hospitals comes from surgically inserting tubes or catheters into veins. Each year, around 80,000 catheter-related bloodstream infections happen in intensive care units alone, underscoring its public health significance in the United States.
“We have been slow in finding solutions for preventing infections from intravenous catheters,” said Althumayri. “A reason could be that we lack good platforms to test new catheter designs or wearable biosensor technologies and train staff so that the number of infections can be reduced.”
To address this gap, the researchers turned to Ecoflex 00-35, a fast-curing, biocompatible rubber used for various applications, including prosthetics for special effects. First, they created molds of common intravenous insertion sites, such as the elbows, hands and forearms. Then, by pouring Ecoflex into the molds that contained artificial bones and tubes acting as veins, the researchers created skin-like replicas.
Next, the researchers tested if the Ecoflex skin replicas had properties that matched that of real skin. They measured the replicas’ wettability, bacterial adhesion and mechanical properties, such as elasticity and resilience. The researchers found that the Ecoflex models could replicate human skin roughness within a 7.5% error margin. Further, high-resolution imaging showed that bacteria could adhere to the skin replica and grow on it.
Then, in a key experiment, the researchers simulated an intravenous catheter insertion into an Ecoflex hand replica that they created. This artificial hand effectively modeled phases of bacterial growth, showing promise that these replicas can be used for implementing infection control measures and improving the design of medical devices like catheters.
However, the researchers noted that their current experiments do not entirely model real-world conditions.
“Developing realistic skin models that can mimic the human skin is an important initial step,” said Dr. Hatice Ceylan Koydemir, corresponding author on the study and assistant professor in the Department of Biomedical Engineering with a research program housed within the Texas A&M University Center for Remote Health Technologies and Systems. “But we think that incorporating additional elements, like body fluids and other clinically relevant situations, in future experiments will bolster our findings and further validate Ecoflex’s potential for medical applications.”
Other contributors to the research include Azra Yaprak Tarman, a graduate student in the Department of Biomedical Engineering.
This study was partly sponsored by the National Institute of General Medical Sciences (one of the National Institutes of Health), the Department of Defense Office of Naval Research and the National Science Foundation-funded Engineering Research Center PATHS-UP. Researchers also received additional support from the Department of Biomedical Engineering, the Center for Remote Health Technologies and Systems, the Texas A&M Engineering Experiment Station, the AggieFab Nanofabrication Facility, and the Soft Matter Facility.
By Texas A&M Engineering
###
END
Prosthetic material could help reduce infections from intravenous catheters
In a new study, Texas A&M researchers have used a skin-like material as a platform for investigating infections from intravenous catheters.
2024-12-21
ELSE PRESS RELEASES FROM THIS DATE:
Can the heart heal itself? New study says it can
2024-12-20
A research team co-led by a physician-scientist at the University of Arizona College of Medicine – Tucson’s Sarver Heart Center found that a subset of artificial heart patients can regenerate heart muscle, which may open the door to new ways to treat and perhaps someday cure heart failure. The results were published in the journal Circulation.
According to the Centers for Disease Control and Prevention, heart failure affects nearly 7 million U.S. adults and is responsible for 14% of deaths per ...
Microscopic discovery in cancer cells could have a big impact
2024-12-20
In 2022 alone, over 20 million people were diagnosed with cancer, and nearly 10 million died from the disease, according to the World Health Organization. While the reaches of cancer are massive, the answer to more effective treatments may be hidden within a microscopic cell.
Led by Texas A&M University graduate students Samere Zade of the biomedical engineering department and Ting-Ching Wang of the chemical engineering department, an article released by the Lele Lab has uncovered new details about the mechanism behind cancer progression.
Published in Nature Communications, the article ...
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
2024-12-20
Researchers at Rice University have made a meaningful advance in the simulation of molecular electron transfer — a fundamental process underpinning countless physical, chemical and biological processes. The study, published in Science Advances, details the use of a trapped-ion quantum simulator to model electron transfer dynamics with unprecedented tunability, unlocking new opportunities for scientific exploration in fields ranging from molecular electronics to photosynthesis.
Electron transfer, critical to processes such as cellular respiration and energy harvesting ...
Breakthrough new material brings affordable, sustainable future within grasp
2024-12-20
HOUSTON, Dec. 20, 2024 –While lithium-ion batteries have been the go-to technology for everything from smartphones and laptops to electric cars, there are growing concerns about the future because lithium is relatively scarce, expensive and difficult to source, and may soon be at risk due to geopolitical considerations. Scientists around the world are working to create viable alternatives.
An international team of interdisciplinary researchers, including the Canepa Research Laboratory at the University of Houston, has developed a new type of material for sodium-ion batteries that could ...
How everyday activities inside your home can generate energy
2024-12-20
Passive interfaces, such as light switches or doorknobs, refer to hardware that can store energy, but the energy can only be used for the purpose it was intended. However, research is imagining new ways for that energy to be harvested and adapted — turning your doorknob could power your alarm system or opening your freezer could turn on your kitchen light.
By integrating smart capabilities such as sensing and energy harvesting, Dr. Jeeeun Kim is transforming passive interfaces into adaptive interfaces, altering hardware to be used ...
Inequality weakens local governance and public satisfaction, study finds
2024-12-20
Local governments in developing countries are crucial for providing public services that promote human development and address challenges like extreme weather, unemployment and crumbling infrastructure. Yet, they often face difficulties in implementing cost-effective programs that meet citizens’ diverse needs, particularly in areas with significant socioeconomic inequalities.
A recent study, published in World Development and led by University of Notre Dame researcher Krister Andersson, explored the impact of economic and social inequalities on local government performance in Chile (a country with very high socioeconomic ...
Uncovering key molecular factors behind malaria’s deadliest strain
2024-12-20
RIVERSIDE, Calif. -- Nearly half the world’s population lives in regions where malaria is endemic, with the parasite Plasmodium falciparum accounting for approximately 95% of malaria-related deaths globally. Now, a new research project funded by the National Institutes of Health and led by a malaria expert at the University of California, Riverside aims to uncover the molecular factors that govern gene regulation and chromatin organization in P. falciparum, with a particular focus on long non-coding RNAs, or lncRNAs.
Chromatin is a combination of DNA and proteins that makes up the chromosomes in the cells of humans and other higher organisms.
“Malaria ...
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
2024-12-20
Triple-negative breast cancer (TNBC) is an aggressive breast cancer. It spreads quickly and has few treatment options. It is also serious because of its rate of recurrence.
Black women are twice as likely as white women to be diagnosed with TNBC. They are also more likely to die from the devastating disease. In fact, the five-year survival rate for TNBC in Black women is only 14% compared to 36% in women from other racial backgrounds.
Multiple biological and socioeconomic factors are blamed for this higher risk. UC Davis Comprehensive Cancer Center researcher Sanchita Bhatnagar and her team have ...
Researchers discovered replication hubs for human norovirus
2024-12-20
Human norovirus, a positive-strand RNA virus that is the leading cause of viral gastroenteritis accounting for an estimated 685 million cases and approximately 212,000 deaths globally per year, has no approved vaccines or antivirals. Paving the way for improved drug therapies, researchers at Baylor College of Medicine and the University of Texas, MD Anderson Cancer Center report in Science Advances the discovery of replication hubs for human norovirus, which could lead to designing antiviral drugs to prevent, control or treat these infections.
“When viruses infect cells, they usually create specialized compartments ...
SNU researchers develop the world’s most sensitive flexible strain sensor
2024-12-20
◦ Seoul National University College of Engineering announced that a research team led by Prof. Seung-Kyun Kang from the Department of Materials Science and Engineering at Seoul National University (first authors: Dr. Jae-Hwan Lee and Ph.D. candidate Yoon-Nam Kim) has developed a strain sensor with record-breaking sensitivity in collaboration with researchers from Dankook University, Ajou University, and Purdue University. This groundbreaking study introduced an hypersensitive, flexible, and stretchable ...
LAST 30 PRESS RELEASES:
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
Tiny, wireless antennas use light to monitor cellular communication
Neutrality has played a pivotal, but under-examined, role in international relations, new research shows
Study reveals right whales live 130 years — or more
Researchers reveal how human eyelashes promote water drainage
Pollinators most vulnerable to rising global temperatures are flies, study shows
DFG to fund eight new research units
Modern AI systems have achieved Turing's vision, but not exactly how he hoped
Quantum walk computing unlocks new potential in quantum science and technology
Construction materials and household items are a part of a long-term carbon sink called the “technosphere”
First demonstration of quantum teleportation over busy Internet cables
Disparities and gaps in breast cancer screening for women ages 40 to 49
US tobacco 21 policies and potential mortality reductions by state
AI-driven approach reveals hidden hazards of chemical mixtures in rivers
Older age linked to increased complications after breast reconstruction
ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting
Early detection model for pancreatic necrosis improves patient outcomes
Poor vascular health accelerates brain ageing
Chinese Medical Journal review provides insights into respiratory syncytial virus
[Press-News.org] Prosthetic material could help reduce infections from intravenous cathetersIn a new study, Texas A&M researchers have used a skin-like material as a platform for investigating infections from intravenous catheters.