(Press-News.org) Images available via link in the notes section
Researchers at the University of Oxford, Durham University and the University of Toronto have detailed the geological ingredients required to find clean sources of natural hydrogen beneath our feet.
The work details the requirements for natural hydrogen, produced by the Earth itself over geological time, to accumulate in the crust, and identifies that the geological environments with those ingredients are widespread globally.
Hydrogen is $135 billion industry, essential for making fertiliser and other important societal chemicals, and a critical clean energy source for future low carbon emission technologies, with a market estimated to be up to $1000 billion by 2050.
These findings offer a solution to the challenge of hydrogen supply, and will help industry to locate and extract natural hydrogen to meet global demands, eliminating the use of hydrocarbons for this purpose.
The findings were published today (Tuesday 13 May) in the journal Nature Reviews Earth & Environment.
In the modern world, a reliable supply of hydrogen gas is vital for the function of society. Fertiliser produced from hydrogen contributes to the food supply of half the global population, and hydrogen is also a key energy component in many roadmaps to a carbon neutral future, essential if we are to prevent the worst predictions of climate change.
Today, hydrogen is produced from hydrocarbons, with waste gases contributing to 2.4% of global CO2 emissions. Demand for hydrogen is set to increase from 90 million tonnes in 2022 to 540 million tonnes in 2050, but it is vital that this hydrogen is not CO2 emitting. Production followed by the burial of waste CO2 (‘carbon sequestration’) or from renewable energy resources (wind or solar) are both future sources of hydrogen, but are not yet commercially competitive.
New research from the University of Oxford, in collaboration with Durham University and the University of Toronto, provides a solution. In the last billion years, enough hydrogen gas has been produced by the Earth’s continental crust to supply mankind’s energy needs for at least 170,000 years. Whilst a proportion of this has been lost, consumed, or is inaccessible today, the remaining hydrogen could offer a natural (and emission-free) source of this natural resource.
Until now, limited historical hydrogen sampling and measurement have restricted scientists’ current understanding of where, and how much, hydrogen is located in the crust. An exploration recipe is critical to find accessible and commercially viable accumulations of natural geological hydrogen.
Study co-author Professor Jon Gluyas (Durham University), notes: “We have successfully developed an exploration strategy for helium and a similar ‘first principles’ approach can be taken for hydrogen.”
This research outlines the key ingredients needed to inform an exploration strategy to find different ‘hydrogen systems.’ This includes how much hydrogen is produced and the rock types and conditions these occur in, how the hydrogen migrates underground from these rocks, the conditions that allow a gas field to form, and the conditions that destroy the hydrogen.
Study co-author Professor Barbara Sherwood Lollar (University of Toronto) said: “We know for example that underground microbes readily feast on hydrogen. Avoiding environments that bring them into contact with the hydrogen is important in preserving hydrogen in economic accumulations.”
The authors outline where understanding of these ingredients is strong, and highlight areas that need more work – such as rock reaction efficiencies and how geological histories can bring the right rocks together with the water that reacts with it.
Some sources of hydrogen gas, such as from the Earth’s mantle, have fuelled much speculation and hyperbole - but this research shows that these are not viable sources. Instead, the authors showed that the ingredients for a complete hydrogen system can be found in a range of common geological settings within the crust. Some of these can be geologically quite young, forming hydrogen ‘recently’ (millions to tens of millions of years), others truly ancient (hundreds of millions of years old) – but critically are found globally.
Lead author Professor Chris Ballentine (University of Oxford, Department of Earth Sciences) said: “Combining the ingredients to find accumulated hydrogen in any of these settings can be likened to cooking a soufflé – get any one of the ingredients, amounts, timing, or temperature wrong and you will be disappointed. One successful exploration recipe that is repeatable will unlock a commercially competitive, low-carbon hydrogen source that would significantly contribute to the energy transition – we have the right experience to combine these ingredients and find that recipe.”
The potential for natural geological hydrogen has motivated the authors to form Snowfox Discovery Ltd., an exploration company with a mission to find societally significant natural hydrogen accumulations.
Notes:
For media enquiries and interview requests, contact Professors Chris Ballentine, Jon Gluyas or Barbara Sherwood Lollar: chris.ballentine@earth.ox.ac.uk; j.g.gluyas@durham.ac.uk; barbara.sherwoodlollar@utoronto.ca
Images relating to the study which can be used in articles can be found in the multimedia section. These images are for editorial purposes relating to this press release only and MUST be credited. They MUST NOT be sold on to third parties.
The review article ‘Natural hydrogen resource accumulation in the continental crust’ will be published in ‘Nature Reviews Earth & Environment’ at 10:00 BST Tuesday 6 May / 05:00 ET Tuesday 6 May 2025 at https://doi.org/10.1038/s43017-025-00670-1
To view a copy of the study before this under embargo, contact Professor Chris Ballentine chris.ballentine@earth.ox.ac.uk.
About the University of Oxford
Oxford University has been placed number 1 in the Times Higher Education World University Rankings for the ninth year running, and number 3 in the QS World Rankings 2024. At the heart of this success are the twin-pillars of our ground-breaking research and innovation and our distinctive educational offer.
Oxford is world-famous for research and teaching excellence and home to some of the most talented people from across the globe. Our work helps the lives of millions, solving real-world problems through a huge network of partnerships and collaborations. The breadth and interdisciplinary nature of our research alongside our personalised approach to teaching sparks imaginative and inventive insights and solutions.
Through its research commercialisation arm, Oxford University Innovation, Oxford is the highest university patent filer in the UK and is ranked first in the UK for university spinouts, having created more than 300 new companies since 1988. Over a third of these companies have been created in the past five years. The university is a catalyst for prosperity in Oxfordshire and the United Kingdom, contributing £15.7 billion to the UK economy in 2018/19, and supports more than 28,000 full time jobs.
END
Scientists define the ingredients for finding natural clean hydrogen
2025-05-13
ELSE PRESS RELEASES FROM THIS DATE:
New study sheds light on health differences between sexes
2025-05-13
UNDER STRICT EMBARGO UNTIL TUESDAY 13 MAY 2025 AT 10AM UK TIME
Peer reviewed | Observational study | People
The results of an international study led by researchers from Queen Mary University of London’s Precision Healthcare University Research Institute (PHURI) shed new light the underlying biological mechanisms which cause differences in health risks, symptoms and outcomes between males and females.
The study, carried out in collaboration with the Berlin Institute of Health at Charité, ...
Scientists film the heart forming in 3D earlier than ever before
2025-05-13
Researchers at UCL and the Francis Crick Institute have, for the first time, identified the origin of cardiac cells using 3D images of a heart forming in real-time, inside a living mouse embryo.
For the study, published in The EMBO Journal, the team used a technique called advanced light-sheet microscopy on a specially engineered mouse model. This is a method where a thin sheet of light is used to illuminate and take detailed pictures of tiny samples, creating clear 3D images without causing any damage to living tissue.
By doing this, they were able to track individual cells as they moved and divided over the course ...
Astrophysicists explore our galaxy’s magnetic turbulence in unprecedented detail using a new computer model
2025-05-13
Astronomers have developed a groundbreaking computer simulation to explore, in unprecedented detail, magnetism and turbulence in the interstellar medium (ISM) — the vast ocean of gas and charged particles that lies between stars in the Milky Way Galaxy.
Described in a new study published today in Nature Astronomy, the model is the most powerful to date, requiring the computing capability of the SuperMUC-NG supercomputer at the Leibniz Supercomputing Centre in Germany. It directly challenges our understanding of how magnetized turbulence operates in astrophysical environments.
James Beattie, ...
Scientists precisely simulate turbulence in the Galaxy — it doesn’t behave like they thought
2025-05-13
From the ocean’s rolling swells to the bumpy ride of a jetliner, turbulence is everywhere. It breaks large waves into smaller ones, cascading energy across scales. It is ubitquitous throughout our Galaxy and the broader Universe, shaping the behavior of plasma, stars, and magnetic fields. Yet despite its ubiquity, turbulence remains one of the greatest unsolved problems in physics.
Now, by developing the world’s largest-ever simulations of magnetized turbulence, an international team of scientists has measured — with unprecedented precision — how ...
DiffInvex reveals how cancers rewire driver genes to beat chemotherapy
2025-05-13
Barcelona, 13 May 2025 – Just as species adapt over generations, our body’s cells accumulate DNA changes throughout life. Most are harmless, yet a few “driver” mutations give a cell a competitive edge and can spark cancer. Chemotherapy then adds a new evolutionary pressure, encouraging further genetic changes that let tumours bounce back.
Researchers at IRB Barcelona have developed DiffInvex, a computational framework that tracks how evolutionary pressures on genes change as healthy cells become tumours and as tumours face chemotherapy. Applied to more than 11,000 human cancer and healthy tissue genomes spanning ...
Combinations of chronic illnesses could double risk of depression
2025-05-13
People with multiple long-term physical health conditions are at a significantly greater risk of developing depression, a study shows.
Researchers found that some combinations of illnesses – particularly cardiometabolic ones like diabetes and heart disease – could more than double the likelihood of a future depression diagnosis.
With multimorbidity – when patients live with two or more chronic conditions – continuing to put pressure on an already stretched healthcare ...
Growth before photosynthesis: how trees regulate their water balance
2025-05-13
Plants have small pores on the underside of their leaves, known as stomata. When the sun rises, these pores open and the plants absorb carbon dioxide (CO2) from the atmosphere, which they need, in addition to sunlight and water, for photosynthesis. At the same time, water evaporates through the open stomata; for a tree, this may be several hundred liters per day.
When water is scarce, plants can close their stomata and thus prevent it from evaporating too much water. The fact that plants have this protective mechanism at their disposal is nothing new. Until now, however, it has not been clear when this closure occurs and what the trigger was. ...
Stress hormone pathways in primate brains reveal key insights for human mental health research
2025-05-13
ROCHESTER, New York, USA, 29 April 2025 -- In a comprehensive Genomic Psychiatry review article published today, researchers from the University of Rochester Medical Center have synthesized decades of research on stress hormone systems in primate brains, potentially unlocking new paths toward treating stress-related psychiatric disorders. The article offers groundbreaking insights into how corticotropin releasing factor (CRF), a key stress hormone, interacts with dopamine neuron populations in ways that differ significantly between rodents and primates.
The Stress-Dopamine Connection: More Complex Than Previously Understood
Stress ...
Enlarged salience network could be first reliable biomarker for depression risk
2025-05-13
OTTAWA, Ontario, Canada, 13 May 2025 - In a comprehensive Genomic Press Commentary published today, researchers have identified what could be the first reliable biomarker for depression risk, potentially transforming how this devastating condition is identified and treated. The commentary examines recent findings demonstrating that individuals with depression consistently exhibit a functionally enlarged salience network compared to non-depressed controls.
Distinctive Brain Connectivity Pattern Identified
The salience network, a neural system responsible for attention allocation and switching between different brain ...
Higher success rate using a simple oral swab test before IVF
2025-05-13
Brief facts about the study: fertility // randomised, clinical trial // 1,466 women.
The study has been published in Frontiers in Endocrinology.
About 15 per cent of all couples of reproductive age are involuntarily childless. A major reason why so many need assisted reproduction is that nowadays more and more people are putting off starting a family.
“This is a global trend that is expected to increase in the coming years. In Europe alone, one million IVF treatments are carried out each year; in Sweden, the corresponding number is 25,000,” ...