PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

AI platform designs molecular missiles to attack cancer cells

A new method can produce custom-designed proteins in just 4-6 weeks that can arm the T cells of the body's immune system to attack and kill cancer cells

2025-07-24
(Press-News.org) Precision cancer treatment on a larger scale is moving closer after researchers have developed an AI platform that can tailor protein components and arm the patient's immune cells to fight cancer. The new method, published in the scientific journal Science, demonstrates for the first time, that it is possible to design proteins in the computer for redirecting immune cells to target cancer cells through pMHC molecules.

This dramatically shortens the process of finding effective molecules for cancer treatment from years to a few weeks.

"We are essentially creating a new set of eyes for the immune system. Current methods for individual cancer treatment are based on finding so-called T-cell receptors in the immune system of a patient or donor that can be used for treatment. This is a very time-consuming and challenging process. Our platform designs molecular keys to target cancer cells using the AI platform, and it does so at incredible speed, so that a new lead molecule can be ready within 4-6 weeks," says Associate Professor at the Technical University of Denmark (DTU) and last author of the study Timothy P. Jenkins.

Targeted missiles against cancer The AI platform, developed by a team from DTU and the American Scripps Research Institute, aims to solve a major challenge in cancer immunotherapy by demonstrating how scientists can generate target treatments for tumor cells and avoid damaging healthy tissue.

Normally, T cells naturally identify cancer cells by recognizing specific protein fragments, known as peptides, presented on the cell surface by molecules called pMHCs.It is a slow and challenging process to utilise this knowledge for therapy, often because the variation in the body's own T-cell receptors makes it challenging to create a personalised treatment. 

Boosting the body's immune system In the study, the researchers tested the strength of the AI platform on a well-known cancer target, NY-ESO-1, which is found in a wide range of cancers. The team succeeded in designing a minibinder that bound tightly to the NY-ESO-1 pMHC molecules. When the designed protein was inserted into T cells, it created a unique new cell product named ‘IMPAC-T’ cells by the researchers, which effectively guided the T cells to kill cancer cells in laboratory experiments.

“It was incredibly exciting to take these minibinders, which were created entirely on a computer, and see them work so effectively in the laboratory,” says postdoc Kristoffer Haurum Johansen, co-author of the study and researcher at DTU.

The researchers also applied the pipeline to design binders for a cancer target identified in a metastatic melanoma patient, successfully generating binders for this target as well. This documented that the method also can be used for tailored immunotherapy against novel cancer targets.

Screening of treatments A crucial step in the researchers' innovation was the development of a ‘virtual safety check’. The team used AI to screen their designed minibinders and assess them in relation to pMHC molecules found on healthy cells. This method enabled them to filter out minibinders that could cause dangerous side effects before any experiments were carried out.

“Precision in cancer treatment is crucial. By predicting and ruling out cross-reactions already in the design phase, we were able to reduce the risk associated with the designed proteins and increase the likelihood of designing a safe and effective therapy,” says DTU professor and co-author of the study Sine Reker Hadrup.

Five years to treatment Timothy Patrick Jenkins expects that it will take up to five years before the new method is ready for initial clinical trials in humans. Once the method is ready, the treatment process will resemble current cancer treatments using genetically modified T cells, known as CAR-T cells, which are currently used to treat lymphoma and leukaemia.Patients will first have blood drawn at the hospital, similar to a routine blood test. Their immune cells will then be extracted from this blood sample and modified in the laboratory to carry the AI-designed minibinders. These enhanced immune cells are returned to the patient, where they act like targeted missiles, precisely finding and eliminating cancer cells in the body.

END


ELSE PRESS RELEASES FROM THIS DATE:

Could metasurfaces be the next quantum information processors?

2025-07-24
Key takeaways New research shows that metasurfaces could be used as strong linear quantum optical networks This approach could eliminate the need for waveguides and other conventional optical components Graph theory is helpful for designing the functionalities of quantum optical networks into a single metasurface In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum ...

Precision drug delivery with magnetic steering and light-triggered release

2025-07-24
Researchers have demonstrated that microscopic drug delivery containers can be magnetically steered to their targets, advancing the development of precision medicine for treating diseases such as cancer. A multi-university team led by Jie Feng, a professor of mechanical science and engineering in The Grainger College of Engineering at the University of Illinois Urbana-Champaign, demonstrated that magnetic particles encapsulated in lipid vesicles can be used to steer the vesicles through fluids. This work, published in the Royal Society of ...

A century of data reveals declining forest diversity

2025-07-24
URBANA, Ill. — Researchers at the University of Illinois Urbana-Champaign have analyzed 96 years of forest census data to better understand ecological changes and inform management practices. Their study, published in Forest Ecology and Management, reveals concerning homogenization trends. This means the forest has become less diverse over time, losing trees that played a critical role in its ecosystem. The researchers analyzed census data from Trelease Woods, which the university acquired in 1917. Homogenization was linked to the spread of the emerald ash borer, an invasive beetle, ...

Duke University men’s basketball and football teams learn how to save a life with CPR

2025-07-24
DURHAM, N.C., July 23, 2025 — On Tuesday, July 22, members of the Duke University men’s basketball and football teams participated in American Heart Association Hands-Only CPR (cardiopulmonary resuscitation) trainings to learn the correct rate and depth of CPR compressions to be confident and capable when faced with a cardiac emergency. According to American Heart Association data, nearly 9 out of every 10 of people who experience cardiac arrest outside of a hospital die, in part because they do not receive immediate CPR more than half of the time. CPR, especially if ...

Obesity shapes COVID-19’s long-term damage

2025-07-24
A study comparing the effects of SARS-CoV-2 infection in lean and obese primates found different long-term consequences of the virus depending on prior obesity and metabolic disease. The results, which also highlighted how widespread long COVID symptoms are in animals, were published July 24th in the open-access journal PLOS Pathogens by Charles Roberts of Oregon Health & Science University, USA, and colleagues. Long-term adverse consequences of SARS-CoV-2 infection, termed “long COVID” or post-acute sequelae of COVID (PASC), are a major component of overall COVID-19 disease ...

New research: Satellite imagery detects illegal fishing activity, shows strict protections work

2025-07-24
Washington, D.C. (July 24, 2025) — New peer-reviewed research in the journal Science demonstrates the power of strict legal bans against industrial fishing in marine protected areas (MPAs). The analysis — which combines satellite imagery and artificial intelligence technology to detect previously untraceable vessels — reveals that most of the globe’s fully and highly protected MPAs successfully deter illegal fishing. The study is the first of its kind to demonstrate that the most strictly protected marine reserves are well ...

One billion-year-old rules of protein stability revealed

2025-07-24
Proteins are life’s molecular workhorses, doing everything from turning sunlight into food to fighting viruses. They are built from 20 different types of amino acid molecules, so even a small protein made of 60 amino acids in length can, in theory, be constructed in a quinquavigintillion, or 10⁷⁸, different ways. That’s about as many atoms there are in the entire universe.  How did evolution choose the handful of amino acid combinations that result in proteins which fold, stay stable and get the job done? And can we learn these rules ...

Satellites show that strictly protected marine areas exclude industrial fishing

2025-07-24
Illegal fishing is a global problem that threatens the health of ocean ecosystems and the economic viability of the fishing industry. Marine protected areas (MPAs)—zones set aside to safeguard marine life—are a key tool for conservation, but monitoring them has been a long-standing challenge. Researchers led by the University of Wisconsin–Madison’s Jennifer Raynor showed that artificial intelligence methods applied to satellite data provide a powerful new way to assess industrial fishing activity in MPAs, bridging blind spots in current ...

Scientists call for urgent policy reform to accelerate cross-border coral restoration efforts

2025-07-24
Scientists Call for Urgent Policy Reform to Accelerate Cross-Border Coral Restoration Efforts New paper published in Science by a team of international scientists urges regulatory reform to accelerate global coral restoration using assisted gene flow—an essential step to safeguard the economic value and coastal protection services that reefs provide. MIAMI (July 24, 2025) – An international team of coral scientists is calling for urgent regulatory reform to support assisted gene flow (AGF)—a ...

Two studies reveal global patterns of industrial fishing across marine protected areas

2025-07-24
In two separate studies leveraging satellite imagery and artificial intelligence techniques, researchers reveal patterns of industrial fishing in coastal marine protected areas (MPAs) worldwide. Collectively, the findings, which may seem contradictory, show that although industrial fishing vessels are present in many protected areas worldwide, MPAs with the highest levels of protection remain largely unfished. Both studies suggest that proper investment in protected areas will pay off and that synthetic aperture radar (SAR) satellite technology could be one of the key tools used ...

LAST 30 PRESS RELEASES:

Robotic space rovers keep getting stuck. UW engineers have figured out why

New research shows how immigration status can become a death sentence during public health crisis

University of Toronto Engineering researchers develop safer alternative non-stick coating

Good vibrations: Scientists use imaging technology to visualize heat

More ecological diversity means better nutritional resources in Fiji’s agroforests

New global study shows freshwater is disappearing at alarming rates

Scientists create an artificial cell capable of navigating its environment using chemistry alone

A little salt is good for battery health

Deep-sea fish confirmed as a significant source of ocean carbonate

How to keep kids with eating disorders home after hospital stay? Therapy

Sex differences affect efficacy of opioid overdose treatment

Aligning AI with Human Values and Well-Being

Engineering the next generation of experimental physics

The scuba diving industry is funding marine ecosystem conservation and employing locals

BATMAN brings TCR therapy out of the shadows

Surrogates more likely to be diagnosed with mental illness, study finds

Columbia Engineering researchers turn dairy byproduct into tissue repair gel

Global estimates of lives and life-years saved by COVID-19 vaccination during 2020-2024

Potential trade-offs of proposed cuts to the NIH

New research simulates cancer cell behavior

COVID, over 2.5 million deaths prevented worldwide thanks to vaccines. One life saved for every 5,400 doses administered

Scuba diving generates up to $20 billion annually

Scientists advance efforts to create ‘virtual cell lab’ as testing ground for future research with live cells

How DNA packaging controls the “genome’s guardian”

Simplified models, deeper insights: Coarse-grained models unlock new potential for ionic liquid simulations

Gorillas’ personal circumstances shape their aggression towards groupmates

Which signalling pathways in the cell lead to possible therapies for Parkinson's disease

Identifying landslide threats using hydrological predictors

First graders who use more educational media spend more time reading

Exploring the meaning in life through phenomenology and philosophy

[Press-News.org] AI platform designs molecular missiles to attack cancer cells
A new method can produce custom-designed proteins in just 4-6 weeks that can arm the T cells of the body's immune system to attack and kill cancer cells