PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

This is your brain without sleep

New MIT research shows attention lapses due to sleep deprivation coincide with a flushing of fluid from the brain — a process that normally occurs during sleep.

2025-10-29
(Press-News.org) CAMBRIDGE, MA -- Nearly everyone has experienced it: After a night of poor sleep, you don’t feel as alert as you should. Your brain might seem foggy, and your mind drifts off when you should be paying attention.

A new study from MIT reveals what happens inside the brain as these momentary failures of attention occur. The scientists found that during these lapses, a wave of cerebrospinal fluid (CSF) flows out of the brain — a process that typically occurs during sleep and helps to wash away waste products that have built up during the day. This flushing is believed to be necessary for maintaining a healthy, normally functioning brain.

When a person is sleep-deprived, it appears that their body attempts to catch up on this cleansing process by initiating pulses of CSF flow. However, this comes at a cost of dramatically impaired attention.

“If you don’t sleep, the CSF waves start to intrude into wakefulness where normally you wouldn’t see them. However, they come with an attentional tradeoff, where attention fails during the moments that you have this wave of fluid flow,” says Laura Lewis, the Athinoula A. Martinos Associate Professor of Electrical Engineering and Computer Science, a member of MIT’s Institute for Medical Engineering and Science and the Research Laboratory of Electronics, and an associate member of the Picower Institute for Learning and Memory.

Lewis is the senior author of the study, which appears today in Nature Neuroscience. MIT postdoctoral associate Zinong Yang is the lead author of the paper.

Flushing the brain

Although sleep is a critical biological process, it’s not known exactly why it is so important. It appears to be essential for maintaining alertness, and it has been well-documented that sleep deprivation leads to impairments of attention and other cognitive functions.

During sleep, the cerebrospinal fluid that cushions the brain helps to remove waste that has built up during the day. In a 2019 study, Lewis and colleagues showed that CSF flow during sleep follows a rhythmic pattern in and out of the brain, and that these flows are linked to changes in brain waves during sleep.

That finding led Lewis to wonder what might happen to CSF flow after sleep deprivation. To explore that question, she and her colleagues recruited 26 volunteers who were tested twice — once following a night of sleep deprivation in the lab, and once when they were well-rested.

In the morning, the researchers monitored several different measures of brain and body function as the participants performed a task that is commonly used to evaluate the effects of sleep deprivation.

During the task, each participant wore an electroencephalogram (EEG) cap that could record brain waves while they were also in a functional magnetic resonance imaging (fMRI) scanner. The researchers used a modified version of fMRI that allowed them to measure not only blood oxygenation in the brain, but also the flow of CSF in and out of the brain. They also measured each subject’s heart rate, breathing rate, and pupil diameter.

The participants performed two attentional tasks while in the fMRI scanner, one visual and one auditory. For the visual task, they had to look at a screen that had a fixed cross. At random intervals, the cross would turn into a square, and the participants were told to press a button whenever they saw this happen. For the auditory task, they would hear a beep instead of seeing a visual transformation.

Sleep-deprived participants performed much worse than well-rested participants on these tasks, as expected. Their response times were slower, and for some of the stimuli, the participants never registered the change at all.

During these momentary lapses of attention, the researchers identified several physiological changes that occurred at the same time. Most significantly, they found a flux of CSF out of the brain just as those lapses occurred. After each lapse, CSF flowed back into the brain.

“The results are suggesting that at the moment that attention fails, this fluid is actually being expelled outward away from the brain. And when attention recovers, it’s drawn back in,” Lewis says.

The researchers hypothesize that when the brain is sleep-deprived, it begins to compensate for the loss of the cleansing that normally occurs during sleep, even though these pulses of CSF flow come with the cost of attention loss.

“One way to think about those events is because your brain is so in need of sleep, it tries its best to enter into a sleep-like state to restore some cognitive functions,” Yang says. “Your brain’s fluid system is trying to restore function by pushing the brain to iterate between high-attention and high-flow states.”

A unified circuit

The researchers also found several other physiological events linked to attentional lapses, including decreases in breathing and heart rate, along with constriction of the pupils. They found that pupil constriction began about 12 seconds before CSF flowed out of the brain, and pupils dilated again after the attentional lapse.

“What’s interesting is it seems like this isn’t just a phenomenon in the brain, it’s also a body-wide event. It suggests that there’s a tight coordination of these systems, where when your attention fails, you might feel it perceptually and psychologically, but it’s also reflecting an event that’s happening throughout the brain and body,” Lewis says.

This close linkage between disparate events may indicate that there is a single circuit that controls both attention and bodily functions such as fluid flow, heart rate, and arousal, according to the researchers.

“These results suggest to us that there’s a unified circuit that’s governing both what we think of as very high-level functions of the brain — our attention, our ability to perceive and respond to the world — and then also really basic fundamental physiological processes like fluid dynamics of the brain, brain-wide blood flow, and blood vessel constriction,” Lewis says.

In this study, the researchers did not explore what circuit might be controlling this switching, but one good candidate, they say, is the noradrenergic system. Recent research has shown that this system, which regulates many cognitive and bodily functions through the neurotransmitter norepinephrine, oscillates during normal sleep.

###

The research was funded by the National Institutes of Health, a National Defense Science and Engineering Graduate Research Fellowship, a NAWA Fellowship, a McKnight Scholar Award, a Sloan Fellowship, a Pew Biomedical Scholar Award, a One Mind Rising Star Award, and the Simons Collaboration on Plasticity in the Aging Brain.

 

END


ELSE PRESS RELEASES FROM THIS DATE:

3D DNA looping discovery in rice paves the way for higher yields with less fertilizer

2025-10-29
A team of Chinese scientists has uncovered a hidden 3D structure in rice DNA that allows the crop to grow more grain while using less nitrogen fertilizer. The finding, published in Nature Genetics by researchers from the Chinese Academy of Sciences (CAS) on Oct. 29, could guide the next "green revolution" toward higher yields and more sustainable farming. The study reveals that a looping section of DNA—a "chromatin loop"—controls the activity of a gene called RCN2, which governs how rice plants form ...

Four subgroups of PCOS open up for individualized treatment

2025-10-29
Four distinct subgroups of polycystic ovary syndrome (PCOS) have been identified in an international study published in Nature Medicine by researchers from Karolinska Institutet, among others. The results open up for more tailored treatments for the millions of women living with the disease worldwide. PCOS is a common hormonal disorder that affects the function of the ovaries and affects approximately 11 to 13 percent of women of childbearing age. In the current study, the researchers analyzed clinical data from over 11,900 affected women over a period of 6.5 years. The results were confirmed in five international cohorts from Asia, Europe, and ...

Perovskites reveal ultrafast quantum light in new study

2025-10-29
Halide perovskites – already a focus of major research into efficient, low-cost solar cells – have been shown to handle light faster than most semiconductors on the market. The paper, published in Nature Nanotechnology, reports quantum transients on the scale of ~2 picoseconds at low temperature in bulk formamidinium lead iodide films grown by scalable solution or vapour methods. That ultrafast timescale indicates use in very fast light sources and other photonic components. Crucially, these effects appear in films made by scalable processing rather than specialised growth in lab-settings – suggesting a practical and affordable ...

New clues on how physical forces spread in neurons

2025-10-29
How do embryos develop? Why does the cortex of the mammalian brain fold? How do we feel touch at our fingertips? These and other fundamental biological questions remain unsolved. Yet, scientists know they all rely on a common principle: the conversion of a physical stimulus into a biochemical signal. The field of mechanobiology has recently gained new insights into which physical signals travel across cells and how far they spread. One key finding is that the rheological properties of the cell membrane (how it deforms and flows under stress) play a key role ...

Heart ‘blueprint’ reveals origins of defects and insights into fetal development

2025-10-29
New research in Sweden has produced a “blueprint” revealing how the human heart is built during prenatal development. It offers insights that could lead to improved prenatal care and new treatments for heart defects, such as holes between heart chambers or deformities of the heart valves. Publishing in Nature Genetics, a research team led by the department of Gene Technology at KTH Royal Institute of Technology published a detailed map of the developing human heart, showing how different groups of cells are arranged and how ...

Some acute and chronic viral infections may increase the risk of cardiovascular disease

2025-10-29
Research Highlights: A review of 155 scientific studies found influenza and COVID infections raised the risk of heart attack or stroke as much as three-to five-fold in the weeks following the initial infection. Viruses that linger in the body, such as HIV, hepatitis C and varicella zoster virus (the virus that causes shingles), can lead to long-term elevations in the risk of cardiovascular events. The study researchers say preventive measures, including vaccination, may play an important role in reducing the risk of heart attacks and strokes, especially in people who already have heart disease or heart disease risk factors. Embargoed until 4 a.m. CT/5 a.m. ET Wednesday, ...

Flavanols in cocoa can protect blood vessel function following uninterrupted sitting - study

2025-10-29
New research from the University of Birmingham shows that eating flavanol-rich foods—like tea, berries, apples, and cocoa—can protect vascular health in men from the harmful effects of prolonged sitting. Sedentary behaviour is prevalent in modern societies; it is estimated that young adults sit for approximately six hours a day, but sitting for long periods induces declines in vascular function. Previous studies have shown that a 1% reduction in vascular function, as measured by brachial Flow-mediated dilatation (FMD), which measures the elasticity of the arteries, leads to a 13% increased risk of cardiovascular ...

$100 Million gift will advance UCSF’s dementia research and care

2025-10-29
UC San Francisco today announced a $100 million gift to its renowned Memory and Aging Center (MAC). It is the first gift to name a UCSF division, which will now be the Edward and Pearl Fein Memory and Aging Center. “We applaud the Edward Fein Charitable Trust for their visionary support of the Fein MAC; this will accelerate the pace of research, education, and care for people with dementia,” said UCSF Chancellor Sam Hawgood, MBBS. “There is a growing recognition that neurodegenerative diseases ...

The 4th Japan-India Universities Forum on 15 November

2025-10-29
The year 2025 marks the 40th anniversary of the formalisation of the India-Japan Science and Technology Cooperation and has been designated as the India-Japan Year of Science, Technology and Innovation Exchange. This celebratory year is expected to promote mutually complementary cooperations that maximise both countries’ strengths in the fields of advanced technology and innovation, while accelerating the co-creation of new value. To sustain and accelerate the momentum of Japan-India collaborations cultivated by past forums, the 4th Forum will explore ways to further strengthen cooperative initiatives in ...

Arctic town Kiruna is colder after the move

2025-10-29
When mining forced Kiruna to relocate, the city planners took the opportunity to modernise. But with a large square, city streets and tall buildings located in a depression, residents have already begun to complain about the “new” city, according to a study from the University of Gothenburg. Kiruna has become colder. What is important to consider when building a city in an Arctic climate? Building in a location with elongated hours of  sunshine and protected from cold winds when placing buildings and streets. These principles have given way to other considerations, it seems, when designing the new ...

LAST 30 PRESS RELEASES:

Artificial tongue uses milk to determine heat level in spicy foods

IU Kelley Futurecast: AI and energy infrastructure may buoy US economy in 2026

The biggest threats to maintaining fat bike trails: climate change and volunteer burnout

AI models for drug design fail in physics

Practice pattern of aerosol drug therapy in acute respiratory distress syndrome patients: An aero-in-ICU study

GLIS model as a predictor of outcomes in older adults with heart failure

Molecules in motion: pioneering the era of supramolecular robotics

Faster and more reliable crystal structure prediction of organic molecules

Thankful at work: A two-week gratitude journal boosts employee engagement

Fibroblasts: Hidden drivers of heart failure progression

IOCB Prague unveils a fundamentally faster, more affordable way to produce quantum nanodiamonds

Artificial intelligence takes the lead in revolutionizing cancer research explored at NFCR’s 2025 Global Summit and Award Ceremonies for Cancer Research and Entrepreneurship.

Switching memories on and off with epigenetics

This is your brain without sleep

3D DNA looping discovery in rice paves the way for higher yields with less fertilizer

Four subgroups of PCOS open up for individualized treatment

Perovskites reveal ultrafast quantum light in new study

New clues on how physical forces spread in neurons

Heart ‘blueprint’ reveals origins of defects and insights into fetal development

Some acute and chronic viral infections may increase the risk of cardiovascular disease

Flavanols in cocoa can protect blood vessel function following uninterrupted sitting - study

$100 Million gift will advance UCSF’s dementia research and care

The 4th Japan-India Universities Forum on 15 November

Arctic town Kiruna is colder after the move

Mayo Clinic study finds majority of midlife women with menopause symptoms do not seek care

Underwater robot ‘Lassie’ discovers remarkable icefish nests during search for Shackleton’s lost ship off Antarctica

Wearable robots you can wear like clothes: automatic weaving of “fabric muscle” brings commercialization closer

Researcher improves century-old equation to predict movement of dangerous air pollutants.

Heatwaves linked to rise in sleep apnoea cases in Europe

Down‑top strategy engineered large‑scale fluorographene/PBO nanofibers composite papers with excellent wave‑transparent performance and thermal conductivity

[Press-News.org] This is your brain without sleep
New MIT research shows attention lapses due to sleep deprivation coincide with a flushing of fluid from the brain — a process that normally occurs during sleep.