PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

APTES: A high-throughput deep learning–based Arabidopsis phenotypic trait estimation system for individual leaves and siliques

2025-11-14
(Press-News.org)

This study is led by Professor Wanneng Yang (National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China). The team created the Arabidopsis Phenotypic Trait Estimation System (APTES), an open-access pipeline integrating computer vision with optimized deep learning models to automate organ phenotyping.

For individual leaf segmentation, an enhanced Cascade Mask R-CNN model achieved precision, recall, and F1 scores of 0.965, 0.958, and 0.961 respectively, representing consistent ~1% improvements over baseline model. Silique segmentation utilized an upgraded DetectoRS model, attaining precision of 0.954, recall of 0.930, and an F1 score of 0.942 with 1–2 percentage-point gains. APTES automatically computes 64 leaf traits and 64 silique traits per sample, with trait measurements showing high reliability (coefficient of determination: 0.776–0.976; mean absolute percentage error: 1.89%–7.90%).

When applied to 166 Arabidopsis accessions, the system’s outputs enabled a genome-wide association study (GWAS) that identified 1,042 SNPs significantly associated with 18 leaf and silique traits, including a key chromosome 3 locus linked to silique number. The pipeline was successfully validated across public Arabidopsis datasets and other plant species, demonstrating broad applicability for accelerated phenotypic analysis and genetic discovery in plant science.

See the article:

APTES: A high-throughput deep learning–based Arabidopsis phenotypic trait estimation system for individual leaves and siliques

https://link.springer.com/article/10.1007/s42994-025-00239-y

END



ELSE PRESS RELEASES FROM THIS DATE:

Missed the live session? Watch the full recording now!

2025-11-14
The inspiring online talk, "Turn Waste Into Wonder: Discover How 'Supercharged Biochar' Can Grow a Greener Future!" is now available on demand. If you couldn't join us live, now is your chance to catch this fascinating discussion. The event took place on October 29 (Wednesday) and featured Prof. Salah Jellali from Sultan Qaboos University, a visionary researcher turning trash into treasure through science. In this session, hosted by the top-cited Dr. Yu Luo from Zhejiang University, Prof. Jellali reveals how to upgrade plain biochar using wastewater and industrial leftovers to create a smart, slow-release fertilizer that grows healthier ...

Machine-learning model could save costs, improve liver transplants, Stanford-led research shows

2025-11-14
There are more candidates on the waitlist for a liver transplant than there are available organs, yet about half the time a match is found with a donor who dies after cardiac arrest following the removal of life support, the transplant must be canceled. For this type of organ donation, called donation after circulatory death, the time between the removal of life support and death must not exceed 30 to 45 minutes, or the surgeons will often reject the liver because of the increased risk of complications to the recipient. Now, Stanford Medicine researchers have developed a machine learning-based ...

Everyday levels of antibiotics in the environment may accelerate the global spread of resistance, new study finds

2025-11-14
Antibiotic resistance is widely recognized as one of the most urgent public health challenges of the twenty first century. Now, a new study shows that even very small amounts of antibiotics that commonly appear in soil, rivers, wastewater, and agricultural runoff may significantly accelerate the spread of antibiotic resistance genes among bacteria. The research, published in Biocontaminant, investigates how four typical antibiotics found in the environment influence both vertical and horizontal gene transfer, the two major pathways through which bacteria pass on resistance. The team examined tetracycline, ...

New review shows how iron powered biochar can transform pollution control and sustainable agriculture

2025-11-14
A new scientific review highlights major advances in the use of iron enhanced biochar as a powerful tool for cleaning contaminated environments and supporting sustainable agriculture. The study synthesizes recent breakthroughs in modifying biochar with iron to dramatically improve its ability to capture pollutants, catalyze chemical reactions, and stabilize nutrients in soil and water systems. Biochar is a carbon rich material created when agricultural residues, wood waste, or other biomass are heated under limited ...

Shocking cost of inaction on alcohol in Australia

2025-11-14
Alcohol-related diseases and injuries have the potential to cost the Australian healthcare system a staggering $68 billion over 60 years if nothing is done to stop the impact. The new Griffith University developed The Alcohol Policy (TAP) model is an epidemiological model used to estimate the avoidable alcohol-related disease, injury and healthcare cost burden in the Australian population aged over 15 years. Dr Mary Wanjau from Griffith’s School of Medicine and Dentistry said if we eliminated alcohol consumption ...

Simultaneous imaging of intracellular DNA and RNA using harmless light

2025-11-14
NIMS, in collaboration with Nagoya University, Gifu University, and the University of Adelaide, has developed a method for simultaneously imaging DNA and RNA inside cells using harmless infrared to near-infrared light. This study enables high-precision detection of all stages of cell death, paving the way for early detection of cell aging and damage for disease prevention. The results were published in Science Advances on October 23, 2025. Background Early detection of cellular damage that leads to aging or death is essential for developing therapeutic strategies for many diseases. Achieving this requires observing cellular changes throughout their life cycle by cell ...

What happens to ecosystems when you restore iconic top predators? It’s more complicated than you might think.

2025-11-13
Across North America, mountain lions, bears, and gray wolves have made a remarkable comeback over the last 50 years. Once nearly exterminated, these animals have been recovering their populations and returning to the landscapes they historically roamed, thanks to protections like the Endangered Species Act, hunting limits, and reintroduction programs. The ecological impact of restoring these large carnivores is potentially huge, in part because of the way they could help to balance ecosystems by keeping prey populations under control.    One ...

Mystery of how much squid short-finned pilot whales eat resolved

2025-11-13
How much squid do short-finned pilot whales (Globicephala macrorhynchus) off the coast of Hawai’i need to consume each day to survive and are there sufficient squid to sustain the population? Knowing these basic facts is essential in the fight to protect populations. Researchers from the USA, Spain, Australia and Denmark reveal in Journal of Experimental Biology that individual Hawaiian short-finned pilot whales consume between 82 and 202 squid per day, adding up to a total of 88,000 tonnes of squid per year for the entire ...

New frog-like insects leap into the science books

2025-11-13
Seven new species of a distinctive frog-like insect have been discovered by a scientist from Anglia Ruskin University (ARU) in Cambridge, England. Belonging to the genus Batracomorphus, the seven previously unknown species of leafhopper were found by Dr Alvin Helden during fieldwork in the tropical rainforest of Uganda. The name Batracomorphus derives from the Greek for “frog-shaped”, and these leafhoppers are mostly green, possess large eyes and jump using their long hind legs, which are tucked alongside their bodies like frogs. The details of Dr Helden’s discoveries have been published in the journal Zootaxa and they are the first new ...

Atomic insights could boost chemical manufacturing efficiency

2025-11-13
Countless everyday products from plastic squeeze bottles to outdoor furniture are derived by first turning propane into propylene. A 2021 study in Science demonstrated chemists could use tandem nanoscale catalysts to integrate multiple steps of the process into a single reaction—a way for companies to increase yield and save money. But it was unclear what was happening at the atomic level, making it difficult to apply the technique to other key industrial processes. Researchers at the University of Rochester developed ...

LAST 30 PRESS RELEASES:

Scientists trace microplastics in fertilizer from fields to the beach

The Lancet Obstetrics, Gynecology, & Women’s Health: Taking paracetamol during pregnancy does not increase risk of autism, ADHD or intellectual disabilities, confirms new gold-standard evidence review

Taking paracetamol during pregnancy does not increase risk of autism, ADHD or intellectual disabilities

Harm reduction vending machines in New York State expand access to overdose treatment and drug test strips, UB studies confirm

University of Phoenix releases white paper on Credit for Prior Learning as a catalyst for internal mobility and retention

Canada losing track of salmon health as climate and industrial threats mount

Molecular sieve-confined Pt-FeOx catalysts achieve highly efficient reversible hydrogen cycle of methylcyclohexane-toluene

Investment in farm productivity tools key to reducing greenhouse gas

New review highlights electrochemical pathways to recover uranium from wastewater and seawater

Hidden pollutants in shale gas development raise environmental concerns, new review finds

Discarded cigarette butts transformed into high performance energy storage materials

Researchers highlight role of alternative RNA splicing in schizophrenia

NTU Singapore scientists find new way to disarm antibiotic-resistant bacteria and restore healing in chronic wounds

Research suggests nationwide racial bias in media reporting on gun violence

Revealing the cell’s nanocourier at work

Health impacts of nursing home staffing

Public views about opioid overdose and people with opioid use disorder

Age-related changes in sperm DNA may play a role in autism risk

Ambitious model fails to explain near-death experiences, experts say

Multifaceted effects of inward foreign direct investment on new venture creation

Exploring mutations that spontaneously switch on a key brain cell receptor

Two-step genome editing enables the creation of full-length humanized mouse models

Pusan National University researchers develop light-activated tissue adhesive patch for rapid, watertight neurosurgical sealing

Study finds so-called super agers tend to have at least two key genetic advantages

Brain stimulation device cleared for ADHD in the US is overall safe but ineffective

Scientists discover natural ‘brake’ that could stop harmful inflammation

Tougher solid electrolyte advances long-sought lithium metal batteries

Experts provide policy roadmap to reduce dementia risk

New 3D imaging system could address limitations of MRI, CT and ultrasound

First-in-human drug trial lowers high blood fats

[Press-News.org] APTES: A high-throughput deep learning–based Arabidopsis phenotypic trait estimation system for individual leaves and siliques