PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Myosin XI-1: A key molecular target for salt-tolerant crops

Motor protein significantly regulates adaptation to salt stress through the intracellular Na⁺ homeostasis mechanism

2025-12-08
(Press-News.org)

Soil salinity is a key abiotic stress factor. Salt stress substantially impairs plant growth, development, and productivity, significantly reducing crop yields worldwide. It induces various kinds of stress in plant organs, including toxic ion accumulation, oxidative stress, and osmotic stress. Notably, high sodium ion (Na⁺) levels affect protein synthesis, photosynthetic efficiency, nutrient homeostasis, and enzyme activities, causing long-term damage to plants.

Therefore, it is crucial to investigate the molecular mechanisms underlying salt tolerance. Recently, scientists have implicated myosin XI, a motor protein that primarily facilitates intracellular trafficking and organelle movement in plant cells, in abiotic stress responses. However, its specific role in salt tolerance remains poorly understood.

Recently, researchers from Waseda University—PhD student Haiyang Liu from the Graduate School of Science and Engineering and Professor Motoki Tominaga from the Faculty of Education and Integrated Arts and Sciences, School of Education—have revealed that the expression of three members, AtXI-K, AtXI-2, and AtXI-1, known as the main drivers of cytoplasmic streaming, was altered under salt stress conditions. Among these, they discovered that only the loss-of-function mutant of AtXI-1 exhibited higher salt tolerance compared to the wild-type (WT). Their insightful findings were made available online and have been published in the journal Plant & Cell Physiology on October 27, 2025.

Liu discusses the motivation behind their present research by stating, “This research was driven by the goal of understanding how plants maintain cellular organization under extreme environmental stress. While motor proteins such as myosin XI have been hypothesized to regulate ion balance, this possibility has remained largely unexplored.”

The team found that the triple mutant (3ko), as well as the single atxi-1 mutant, exhibited improved salt tolerance. In contrast, the salt tolerance of atxi-k, atxi-2, and the double mutant (2ko) lines was not significantly different from that of the WT Arabidopsis plants. This observation points to a particular role of AtXI-1 in modulating salt tolerance.

Further investigations revealed that the atxi-1 plants accumulated lower amounts of Na⁺, while maintaining higher levels of chlorophyll and proline under salt stress conditions, in comparison to their WT counterparts. However, 3ko lines exhibited low seed germination under salt stress, indicating a stage-specific tolerance mechanism.

Considering all the above insights, the researchers propose that Arabidopsis myosin XI-1 substantially regulates adaptation to salt stress, likely via the intracellular Na⁺ homeostasis mechanism. These findings suggest functional diversification among myosin XI members and provide valuable insights into myosin XI-mediated stress responses, identifying potential targets for enhancing crop resilience to salinity. 

“Our work offers a new strategy for improving crop salt tolerance by targeting myosin XI function. This could enable the development of salt-resilient cultivars suited for saline soils, contributing to sustainable agriculture under climate stress. This research addresses the global challenge of soil salinization, which threatens agricultural productivity and food security. By uncovering a novel role for myosin XI in regulating Na⁺ homeostasis, it offers a molecular target for developing salt-tolerant crops, contributing to sustainable farming in saline-affected regions,” concludes Liu, highlighting the potential real-life applications of their breakthrough study.

By revealing how myosin XI-1 contributes to salt tolerance, this research advances the molecular understanding of plant stress responses and offers a promising direction for developing resilient crops through targeted genetic and physiological studies.

 

***

 

Reference
DOI: 10.1093/pcp/pcaf140

 

 

Authors: Haiyang Liu1 and Motoki Tominaga2

 

Affiliations:

1Graduate School of Science and Engineering, Waseda University, Japan

2Faculty of Education and Integrated Arts and Sciences, Waseda University, Japan

 

About Waseda University
Located in the heart of Tokyo, Waseda University is a leading private research university that has long been dedicated to academic excellence, innovative research, and civic engagement at both the local and global levels since 1882. The University has produced many changemakers in its history, including eight prime ministers and many leaders in business, science and technology, literature, sports, and film. Waseda has strong collaborations with overseas research institutions and is committed to advancing cutting-edge research and developing leaders who can contribute to the resolution of complex, global social issues. The University has set a target of achieving a zero-carbon campus by 2032, in line with the Sustainable Development Goals (SDGs) adopted by the United Nations in 2015. 

To learn more about Waseda University, visit https://www.waseda.jp/top/en  

 

About Haiyang Liu from Waseda University
Haiyang Liu, the first author of this study, is a PhD student at the Graduate School of Science and Engineering at Waseda University, Japan. His research interest lies in the study of myosin XI, a key player in plant drought defense, boron uptake, and salt tolerance. He has authored three papers on these topics with Motoki Tominaga, the corresponding author of this study, a professor at the Faculty of Education and Integrated Arts and Sciences at the School of Education at Waseda University.

END



ELSE PRESS RELEASES FROM THIS DATE:

Pusan National University study highlights the health hazards of ultrafine particles from small home appliances with electric heating coils and brushed DC motors

2025-12-08
Indoor air quality has become an urgent concern in recent times, as we spend a considerable amount of time inside our home. Advances in measurement technologies have revealed that small, otherwise invisible ultrafine particles (UFPs) pose a significant threat to indoor air quality. While there are outdoor sources of this particulate air pollutants, the most common source lies indoor. The UFPs emitted by small home appliances equipped with electric heating coils and brushed DC motors can reach to the users as they are deployed close to the users without any preventive shield. In a new study published from Pusan National University (PNU), a group of researchers led by Professor ...

Global first: New Indigenous-led research initiative to revitalize legal orders

2025-12-08
Indigenous communities will be empowered to renew and rebuild their own legal systems with support from Next Steps: Rebuilding Indigenous Law, the new research initiative from the University of Victoria (UVic) Faculty of Law.  “UVic is in the forefront of a profound shift in how education and research can be done—with Indigenous Peoples as co-creators and leaders,” says Qwul’sih’yah’maht, Robina Thomas, acting president and vice-chancellor of the University of Victoria. “Next Steps not only represents a model ...

Transforming acoustic waves with a chip

2025-12-08
Acoustic waves are best known as the invisible delivery agents bringing voices, car horns, or our favorite song to our ears. But the waves can also move physical objects, like an item vibrating atop a concert speaker — offering the power to turn sound into a tool.  Since receiving a 2024 National Science Foundation CAREER Award, Assistant Professor of Mechanical Engineering Zhenhua Tian and his team have explored how to use acoustic waves as invisible grabbers to manipulate fluid flows and tiny particles on electronic chips. ...

When climate risk hits home, people listen: Study reveals key to engagement with disaster preparedness messaging

2025-12-08
A subtle change in how climate risk is communicated—mentioning a person’s local area—can significantly increase attention to disaster preparedness messages, according to a new study by researchers at the Stockholm School of Economics and Harvard University, published in Nature Human Behaviour. The findings offer a practical, low-cost strategy for governments, insurers and local authorities seeking to boost climate resilience in vulnerable communities. In a large field experiment involving nearly 13,000 homeowners in wildfire-prone areas ...

Major breakthrough against diabetes thanks to a microbial molecule that disarms inflammation

2025-12-08
An international research team led by Professor Marc-Emmanuel Dumas at Imperial College London & CNRS together with Prof. Patrice Cani (Imperial & University of Louvain, UCLouvain), Dr. Dominique Gauguier (Imperial & INSERM, Paris) and Prof. Peter Liu (University of Ottawa Heart Institute) has uncovered a surprising ally in the fight against insulin resistance and type 2 diabetes: a microbial metabolite called trimethylamine (TMA). Published in Nature Metabolism, the study reveals that ...

Silicon chips on the brain: Researchers announce a new generation of brain-computer interface

2025-12-08
A new brain implant stands to transform human-computer interaction and expand treatment possibilities for neurological conditions such as epilepsy, spinal cord injury, ALS, stroke, and blindness – helping to manage seizures and restore motor, speech, and visual function. This is done by providing a minimally invasive, high-throughput information link directly to and from the brain. The transformational potential of this new system lies in its small size and ability to transfer data at high rates. Developed by researchers at Columbia University, NewYork-Presbyterian Hospital, Stanford University, and the University of Pennsylvania, this brain-computer interface (BCI) relies ...

Getting rest is the best

2025-12-08
Getting enough sleep and staying active are two of the most important things we can do for our health, but new research shows that most people struggle to achieve both, and that sleep may hold the key to moving more. A study led by Flinders University analysed more than 28 million days of real-world health data from over 70,000 people across the globe and found that fewer than 13% consistently meet recommended sleep and physical activity targets. The findings suggest that improving sleep quality could be an effective way to boost daily activity. The research team examined data collected over three ...

Towards sustainable organic synthesis – Mechanochemistry replaces lithium with sodium in organic reactions

2025-12-08
Highly reactive organometallic reagents, like organolithiums (molecules with a carbon–lithium bond) are essential reagents in organic synthesis because of their applications from polymer synthesis to pharmaceuticals, and more. Lithium resources, however, are difficult to access because concentrated deposits are geographically restricted and modern extraction methods are burdened with environmental costs. Replacing lithium with sodium would be a significant contribution towards environmentally friendly organic synthesis because it is >1000 times more abundant and its extraction from seawater is sustainable ...

Wireless device ‘speaks’ to the brain with light

2025-12-08
In a new leap for neurobiology and bioelectronics, Northwestern University scientists have developed a wireless device that uses light to send information directly to the brain — bypassing the body’s natural sensory pathways. The soft, flexible device sits under the scalp but on top of the skull, where it delivers precise patterns of light through the bone to activate neurons across the cortex. In experiments, scientists used the device’s tiny, patterned bursts of light to activate specific populations of neurons deep inside the brains of mouse models. (These neurons are genetically modified to respond to light.) The mice quickly learned ...

Greenhouse gases to intensify extreme flooding in the Central Himalayas

2025-12-08
Rising greenhouse gas emissions could see the size of extreme floods in the Central Himalayas increase by between as much as 73% and 84% by the end of this century. Geographers at Durham University, UK, simulated the risk of increased flooding on the Karnali River, which spans Nepal and China and has the potential to impact communities in Nepal and India. They found that extreme floods – those with a 1% chance of happening within a year – could increase in size by 22% and 26% between 2020 and 2059, compared to flooding seen in the region between 1975 and 2014. This increase ...

LAST 30 PRESS RELEASES:

CNU research explains how boosting consumer trust unlocks the $4 billion market for retired EV batteries

Reimagining proprioception: when biology meets technology

Chungnam National University study finds climate adaptation can ease migration pressures in Africa

A cigarette compound-induced tumor microenvironment promotes sorafenib resistance in hepatocellular carcinoma via the 14-3-3η-modified tumor-associated proteome

Brain network disorders study provides insights into the role of molecular chaperones in neurodegenerative diseases

Making blockchain fast enough for IoT networks

Chemotherapy rewires gut bacteria to curb metastasis

The hidden microbial communities that shape health in space

Arctic cloud and ice formation affected by Russian river runoff as region studied for first time

Study reveals synergistic effect of CDK2 and CDK4/6 combination therapy

Living walls boost biodiversity by providing safe spaces for urban wildlife

New AI method revolutionizes the design of enzymes

Smartwatch use enhances the detection of heart arrythmias, increasing the quality of care.

MAN PPK2: A “universal” enzyme for the production of RNA building blocks

Sniffing out the cause of keratoderma-associated foot odor

Tuning color through molecular stacking: A new strategy for smarter pressure sensors

Humans use local dialects to communicate with honeyguides

Theory-breaking extremely fast-growing black hole

ŌURA and National University of Singapore open Joint Lab to advance research in personalized preventive health

Hope for smarter lung cancer care

Singapore scientists discover lung cancer's "bodyguard system" - and how to disarm it

Bacteria use wrapping flagella to tunnel through microscopic passages

New critique prompts correction of high-profile Yellowstone aspen study, highlighting challenges in measuring ecosystem response to wolf reintroduction

Stroke survivors miss critical treatment, face greater disability due to systemic transfer delays

Delayed stroke care linked to increased disability risk

Long term use of anti-acid drugs may not increase stomach cancer risk

Non-monetary 'honor-based' incentives linked to increased blood donations

Natural ovulation as effective as hormones before IVF embryo transfer

Major clinical trial provides definitive evidence of impacts of steroid treatment on severe brain infection

Low vitamin D levels shown to raise risk of hospitalization with potentially fatal respiratory tract infections by 33%

[Press-News.org] Myosin XI-1: A key molecular target for salt-tolerant crops
Motor protein significantly regulates adaptation to salt stress through the intracellular Na⁺ homeostasis mechanism