PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Human adipose tissue: a new source for functional organoids

2025-12-31
(Press-News.org)

A recent study published in Engineering has unveiled a novel approach to generating functional organoids from human adult adipose tissue. This method, which bypasses traditional stem cell isolation and genetic manipulation, offers a more straightforward and scalable pathway for creating organoids that can be used in regenerative medicine and disease modeling.

 

The research, led by a team from the Shanghai Jiao Tong University School of Medicine and the Shanghai Institute for Plastic and Reconstructive Surgery, demonstrates the potential of human adult adipose tissue to differentiate into organoids representing all three germ layers—mesoderm, endoderm, and ectoderm—without the need for single-cell processing. By employing a specialized suspension culture system, the team developed reaggregated microfat (RMF) tissues that could differentiate into various functional organoids.

 

One of the key findings of the study is the generation of humanized bone marrow organoids from RMF tissues. These organoids were able to support human hematopoiesis in immunodeficient mice, mimicking the structural and functional complexity of native human bone marrow. The researchers found that RMF pellets, when implanted into mice, underwent endochondral ossification, forming ossicles that contained both endosteal and perivascular niches. These ossicles supported the engraftment and differentiation of human hematopoietic stem cells, demonstrating their potential as a model for studying human hematopoiesis.

 

In addition to bone marrow organoids, the study also explored the differentiation of RMF tissues into insulin-producing islet organoids. Using a refined four-stage protocol, the researchers guided RMF cells through definitive endoderm, pancreatic progenitor, endocrine progenitor, and β-cell stages. The resulting islet organoids were capable of secreting insulin in response to glucose stimulation, with a significant increase in insulin secretion under high-glucose conditions. When transplanted into diabetic mice, these organoids rapidly vascularized and reversed hyperglycemia, maintaining normal blood glucose levels for the duration of the study.

 

The researchers also demonstrated the ectodermal differentiation potential of RMF tissues by generating neural-like tissues. RMF pellets were induced to form neurospheres, which then differentiated into neuronal and neuroglial lineages. The cells expressed markers for neural stem cells, mature neurons, and glial cells, indicating the successful conversion of adipose tissue into neural-like tissues.

 

This study highlights the versatility and potential of human adult adipose tissue as a source for organoid generation. By avoiding complex cell isolation and genetic manipulation, the RMF-based strategy offers a more practical and clinically relevant approach to creating functional organoids. The findings suggest that adipose tissue could serve as a valuable resource for developing therapeutic applications in regenerative medicine, particularly for conditions such as diabetes and hematological disorders.

 

The research underscores the importance of exploring alternative sources for organoid generation, especially those that can be easily accessed and processed. As the field of regenerative medicine continues to advance, the ability to generate functional organoids from readily available tissues like adipose tissue could pave the way for more efficient and accessible treatments.

 

The paper “Direct Differentiation of Human Adult Adipose Tissue into Multilineage Functional Organoids,” is authored by Ru-Lin Huang, Jing Yang, Yuxin Yan, Xiangqi Liu, Xiya Yin, Chuanqi Liu, Xingran Liu, Rehanguli Aimaier, Qiumei Ji, Gen Li, Tao Zan, Kang Zhang, Qingfeng Li. Full text of the open access paper: https://doi.org/10.1016/j.eng.2025.06.031. For more information about Engineering, visit the website at https://www.sciencedirect.com/journal/engineering.

END



ELSE PRESS RELEASES FROM THIS DATE:

Metro lines double as freight highways during off-peak hours, Beijing study shows

2025-12-31
Beijing’s metro system could soon carry express parcels alongside commuters during quiet periods, according to a new operational blueprint published in Engineering. Researchers from Beijing Jiaotong University and East China Jiaotong University have designed a joint optimization model that simultaneously plans train timetables, rolling-stock circulation, and cargo loading while allowing trains to skip stations with low demand. The approach, tested on the Yizhuang Line, cut operating costs by up to 25% compared with conventional fixed-composition, all-stop services.   The study addresses the rapid rise in urban freight volumes—already 15 million parcels a day in Beijing—by ...

Biomedical functions and applications of nanomaterials in tumor diagnosis and treatment: perspectives from ophthalmic oncology

2025-12-31
Eye tumors are difficult to treat because drugs often struggle to reach tumor tissue without damaging healthy structures of the eye. A new review published in Biofunctional Materials summarizes how nanomaterials—extremely small, engineered particles—could improve both the diagnosis and treatment of eye cancers. The authors highlight recent advances, key challenges, and future directions for using nanotechnology to achieve safer and more precise eye tumor care. Treating tumors inside the eye presents unique challenges. The eye is a small and highly sensitive organ, protected by biological barriers that limit drug penetration. While ...

3D imaging unveils how passivation improves perovskite solar cell performance

2025-12-31
Perovskite solar cells have garnered widespread attention as a low-cost, high-efficiency alternative to conventional silicon photovoltaics. However, defects in perovskite films impede charge transport, resulting in energy loss and compromised operational stability. One solution to this problem is "passivation treatment"—a process that adds chemicals such as simple salts or organic molecules to the film. These small molecules or ions latch onto defects in the perovskite material, preventing the defects from interfering with electrical flow. Unfortunately, verifying the internal efficacyof various passivation ...

Enriching framework Al sites in 8-membered rings of Cu-SSZ-39 zeolite to enhance low-temperature ammonia selective catalytic reduction performance

2025-12-31
A research team led by Prof. Jihong Yu and Prof. Wenfu Yan (Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry) recently developed a potassium-based Cu-SSZ-39 catalyst (Cu-SSZ-39-K) with an increased concentration of Al in the 8-memberedrings. This design promotes the formation of more [Cu(OH)]+-Z species, resulting in nearly double the NOx conversion at 150-225°C and excellent retention of activity after hydrothermal ageing at 800°C. The work was published ...

AI-powered RNA drug development: a new frontier in therapeutics

2025-12-31
In the realm of modern medicine, RNA-based therapies have emerged as a promising avenue, with significant advancements in metabolic diseases, oncology, and preventive vaccines. A recent article published in Engineering titled “The Future of AI-Driven RNA Drug Development” by Yilin Yan, Tianyu Wu, Honglin Li, Yang Tang, and Feng Qian, explores how artificial intelligence (AI) can revolutionize RNA drug development, addressing current limitations and offering new opportunities for innovation.   The article highlights ...

Decoupling the HOR enhancement on PtRu: Dynamically matching interfacial water to reaction coordinates

2025-12-31
Platinum-ruthenium (PtRu) alloys are notable for their catalytic activity and durability in the hydrogen oxidation reaction (HOR). However, the mechanisms behind their superior performance compared to pure Pt are not fully understood. Research has identified many factors influencing HOR activity, including initial hydrogen binding energy, OH affinity driving the bifunctional mechanism, and factors like hydrogen bond (H-bond) network rigidity, connectivity, and interfacial water orientation. These complexities of the interfacial catalytic reaction present significant challenges in understanding the underlying mechanisms and achieving more precise enhancements ...

Sulfur isn’t poisonous when it synergistically acts with phosphine in olefins hydroformylation

2025-12-31
Full news release Dalian, China-Sulfur, long feared as a “poison” that shuts down precious metal catalysts, can actually help them work better when used in just the right way, according to new research published in Chinese Journal of Catalysis. A team led by Prof. Yunjie Ding at Dalian Institute of Chemical Physics, Chinese Academy of Sciences andProf. Xueqing Gong at Shanghai Jiao Tong University, has shown that a tiny, carefully tuned amount of sulfur can boost the speed and robustness of a key industrial reaction by up to twofold. The reaction, called hydroformylation, adds carbon monoxide and hydrogen to simple molecules ...

URI researchers uncover molecular mechanisms behind speciation in corals

2025-12-30
Matías Gómez-Corrales, a recent biological sciences Ph.D. graduate from the University of Rhode Island, and his advisor, Associate Professor Carlos Prada, have published a paper in Nature Communications, revealing key mechanisms in speciation in corals and proposing a new hypothesis on the origin of species in the ocean.  Their new study examines how coral species form and contributes to long-standing questions in evolutionary biology about how marine biodiversity originates. The work builds on decades of ecological, reproductive, ...

Chitin based carbon aerogel offers a cleaner way to store thermal energy

2025-12-30
A team of materials scientists has developed a new bio based carbon material that can store thermal energy more efficiently while preventing one of the most persistent problems in phase change materials leakage during melting. The study demonstrates how carbon derived from chitin, a natural polymer found in crustacean shells and fungi, can stabilize heat storing compounds and improve their performance for energy applications. Phase change materials store and release heat as they melt and solidify, making them attractive for applications such as building temperature regulation, solar energy storage, and electronic thermal management. However, many organic phase change materials suffer ...

Tracing hidden sources of nitrate pollution in rapidly changing rural urban landscapes

2025-12-30
Nitrate pollution has become one of the most widespread water quality challenges in intensively farmed regions around the world, threatening drinking water safety, aquatic ecosystems, and downstream lakes. A new study published in Nitrogen Cycling reveals how human activities in rural urban transition zones are reshaping the nitrogen cycle, allowing nitrate to move through rivers and groundwater and ultimately reach large freshwater lakes. The research focuses on the rural urban ecotone of the Yangtze River Delta in eastern China, an area where agriculture, ...

LAST 30 PRESS RELEASES:

Correlation between cancer cachexia and immune-related adverse events in HCC

Human adipose tissue: a new source for functional organoids

Metro lines double as freight highways during off-peak hours, Beijing study shows

Biomedical functions and applications of nanomaterials in tumor diagnosis and treatment: perspectives from ophthalmic oncology

3D imaging unveils how passivation improves perovskite solar cell performance

Enriching framework Al sites in 8-membered rings of Cu-SSZ-39 zeolite to enhance low-temperature ammonia selective catalytic reduction performance

AI-powered RNA drug development: a new frontier in therapeutics

Decoupling the HOR enhancement on PtRu: Dynamically matching interfacial water to reaction coordinates

Sulfur isn’t poisonous when it synergistically acts with phosphine in olefins hydroformylation

URI researchers uncover molecular mechanisms behind speciation in corals

Chitin based carbon aerogel offers a cleaner way to store thermal energy

Tracing hidden sources of nitrate pollution in rapidly changing rural urban landscapes

Viruses on plastic pollution may quietly accelerate the spread of antibiotic resistance

Three UH Rainbow Babies & Children’s faculty elected to prestigious American Pediatric Society

Tunnel resilience models unveiled to aid post-earthquake recovery

Satellite communication systems: the future of 5G/6G connectivity

Space computing power networks: a new frontier for satellite technologies

Experiments advance potential of protein that makes hydrogen sulfide as a therapeutic target for Alzheimer’s disease

Examining private equity’s role in fertility care

Current Molecular Pharmacology achieves a landmark: real-time CiteScore advances to 7.2

Skeletal muscle epigenetic clocks developed using postmortem tissue from an Asian population

Estimating unemployment rates with social media data

Climate policies can backfire by eroding “green” values, study finds

Too much screen time too soon? A*STAR study links infant screen exposure to brain changes and teen anxiety

Global psychiatry mourns Professor Dan Stein, visionary who transformed mental health science across Africa and beyond

KIST develops eco-friendly palladium recovery technology to safeguard resource security

Statins significantly reduce mortality risk for adults with diabetes, regardless of cardiovascular risk

Brain immune cells may drive more damage in females than males with Alzheimer’s

Evidence-based recommendations empower clinicians to manage epilepsy in pregnancy

Fungus turns bark beetles’ defenses against them

[Press-News.org] Human adipose tissue: a new source for functional organoids