PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Turning industrial exhaust into useful materials with a new electrode

2026-01-21
(Press-News.org) Flue gas is exhausted from home furnaces, fireplaces and even industrial plants, and it carries polluting carbon dioxide (CO2) into the atmosphere. To help mitigate these emissions, researchers reporting in ACS Energy Letters have designed a specialized electrode that captures airborne CO2 and directly converts it into a useful chemical material called formic acid. The system performed better than existing electrodes in tests with simulated flue gas and at ambient CO2 concentrations.

“This work shows that carbon capture and conversion do not need to be treated as separate steps. By integrating both functions into a single electrode, we demonstrate a simpler pathway for CO2 utilization under realistic gas conditions,” explains Wonyong Choi, a corresponding author on the study.

Capturing CO2 from the air should be relatively simple — after all, plants do it all the time. But converting the gas into something useful is difficult, and it is a crucial step in ensuring that carbon capture methods are widely implemented. In industrial emissions like flue gas, CO2 is often diluted amid other gases such as nitrogen and oxygen. However, existing conversion methods require highly concentrated CO2 that’s already separated from other gases to function efficiently. So, Donglai Pan, Myoung Hwan Oh, Wonyong Choi and colleagues wanted to design a carbon capture and conversion system that functioned in conditions consistent with real-world flue gas and could convert even small amounts of captured CO2 into a useful product.

The team constructed an electrode that allows gas to diffuse in, then catches and converts the airborne CO2. The electrode consists of three layers: a specialized carbon-capturing material, gas-permeable carbon paper, and catalytic tin(IV) oxide. This design converted CO2 gas directly into formic acid, a valuable starting material for a variety of chemical applications, including fuel cells.

In tests with pure CO2 gas, the new electrode was around 40% more efficient than other existing carbon-converting electrodes under comparable laboratory conditions. More importantly, in tests with a simulated flue gas containing 15% CO2, 8% oxygen gas and 77% nitrogen gas, it continued to produce a substantial amount of formic acid, with the other systems producing a negligible amount. Finally, the new electrode system captured CO2 at concentrations similar to current atmospheric levels, demonstrating its utility to operate in ambient air conditions. The researchers say that this work offers a promising strategy for integrating CO2 capture into practical industrial applications, and they hope that it can lead to similar systems to capture other greenhouse gases like methane.

The authors acknowledge funding from the National Research Foundation of Korea.

The paper’s abstract will be available on Jan. 21 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acsenergylett.5c03504

###

The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Follow us: Facebook | LinkedIn | Instagram

END



ELSE PRESS RELEASES FROM THIS DATE:

ORNL to partner with Type One Energy, UT on world-class facility to validate next-gen fusion

2026-01-21
The Department of Energy’s Oak Ridge National Laboratory (ORNL), Type One Energy and the University of Tennessee, Knoxville (UT), are partnering to establish a world-class facility that will drive American innovation and move fusion energy closer to reality.  This high-heat flux (HHF) facility, located at the Tennessee Valley Authority’s (TVA) Bull Run Energy Complex in East Tennessee, will evaluate how materials react under extreme conditions in a fusion device. The HHF facility will accelerate the development of plasma-facing components (PFCs), ...

New journal section tackles AI, ethics, and digital health communication

2026-01-21
New York, NY | January 21, 2026: The CUNY Graduate School of Public Health and Health Policy (CUNY SPH) is pleased to announce the launch of AI, Health, and Digital Spaces, a new section of the peer-reviewed Journal of Health Communication, International Perspectives. The section responds to the growing influence of artificial intelligence (AI) and digital platforms on how health information is created, shared, and understood, and marks an important step forward in advancing scholarship at the intersection of technology and public health communication. The ...

Jeonbuk National University researchers develop novel dual-chemical looping method for efficient ammonia synthesis

2026-01-21
Ammonia is an essential chemical used across many industries worldwide. Beyond its traditional role as a fertilizer, it is also a promising liquid hydrogen carrier and low-carbon fuel that could help reduce reliance on fossil fuels. However, conventional ammonia production based on the Haber–Bosch (HB) process requires considerable energy and contributes significantly to greenhouse gas emissions, accounting for roughly 1–1.3% of global emissions annually. Given its growing importance, there is an urgent need to reduce the environmental burden of ammonia production. Recently, ...

New study sheds light on stroke recovery via exercise-induced migration of mitochondria

2026-01-21
Physical rehabilitation and symptom management still remain the mainstay of treatment for stroke, as clot removal or dissolution is effective only within a narrow time frame after the stroke. After that, many patients are left with long-term problems like difficulty in walking, speaking, and memory decline. Exercise has been beneficial in preventing strokes and improving recovery. However, the majority of these patients, being elderly, are too frail to exercise enough to gain these benefits.   In an ...

SEOULTECH researchers develop sodium-based next-generation smart electrochromic windows

2026-01-21
Thermal management is essential for reducing future heating and cooling energy consumption. Notably, the near-infrared (NIR) component of sunlight is closely associated with heat absorption. Hexagonal tungsten oxide nanorods are promising NIR-blocking electrochromic materials that change their color, transparency, and opacity upon the application of a small electric voltage. Their hexagonal tunnels, known as optically active sites, can effectively accommodate electrolyte ions and enable dynamic NIR ...

Data-driven analysis reveals three archetypes of armed conflicts

2026-01-21
The language used to describe conflicts naturally reflects assumptions about how different forms of violence emerge and develop. “For instance, we think that 'civil wars' are the result of internal strife, and we debate whether wars should be characterized as matters of 'invasion' or 'defense.' In a similar way, experts also label conflicts to indicate important properties and to make patterns across conflicts comparable for use in systematic analysis, early warning, and ...

Heart disease, stroke deaths down, yet still kill more in US than any other cause

2026-01-21
Highlights: According to the American Heart Association’s 2026 Heart Disease and Stroke Statistics Update, heart disease remains the leading cause of death in the U.S. and stroke has moved up to the #4 spot. Together, heart disease and stroke accounted for more than a quarter of all deaths in the U.S. in 2023, the most recent year for which data is available. Cardiovascular diseases, including all types of heart disease and stroke, claim more lives in the U.S. each year than all forms of cancer and accidental deaths — the #2 and #3 causes of death — combined. Embargoed until 4 a.m. CT / 5 a.m. ET Wednesday, Jan. 21, 2026 DALLAS, ...

Light switches made of ultra-thin semiconductor layers

2026-01-21
A nanostructure made of silver and an atomically thin semiconductor layer can be turned into an ultrafast switching mirror device that may function as an optical transistor – with a switching speed around 10,000 times faster than an electronic transistor. An international team of researchers led by University of Oldenburg physicist Professor Dr. Christoph Lienau describes this effect in a paper published in the current issue of Nature Nanotechnology. Ultrafast light switches offer interesting prospects for optical data processing, the researchers explain. The team’s goal was to find a material ...

Creative talent: has AI knocked humans out?

2026-01-21
Are generative artificial intelligence systems such as ChatGPT truly creative? A research team led by Professor Karim Jerbi from the Department of Psychology at the Université de Montréal, and including AI pioneer Yoshua Bengio, also a professor at Université de Montréal, has just published the largest comparative study ever conducted on the creativity of large language models versus humans. Published in Scientific Reports (Nature Portfolio), the findings reveal that generative AI has reached a major milestone: it can ...

Sculpting complex, 3D nanostructures with a focused ion beam

2026-01-21
Scientists from the RIKEN Center for Emergent Matter Science and colleagues have developed a new way to fabricate three-dimensional nanoscale devices from single-crystal materials using a focused ion beam instrument. The group used this new method to carve helical-shaped devices from a topological magnet composed of cobalt, tin, and sulfur, with a chemical formula of Co₃Sn₂S₂, and found that they behave like switchable diodes, meaning that they allow electricity to flow more easily in one direction than the other. Creating ...

LAST 30 PRESS RELEASES:

Rice establishes Global Brain Economy Initiative in Davos, aligned with new report on brain health and AI

Quantum error correction with logical qubits

Nutrient-stimulated hormone-based therapies: A new frontier in the prevention and management of MASH-associated hepatocellular carcinoma

Trauma or toxic? A deep dive into the impact of stress on kids' health

Turning industrial exhaust into useful materials with a new electrode

ORNL to partner with Type One Energy, UT on world-class facility to validate next-gen fusion

New journal section tackles AI, ethics, and digital health communication

Jeonbuk National University researchers develop novel dual-chemical looping method for efficient ammonia synthesis

New study sheds light on stroke recovery via exercise-induced migration of mitochondria

SEOULTECH researchers develop sodium-based next-generation smart electrochromic windows

Data-driven analysis reveals three archetypes of armed conflicts

Heart disease, stroke deaths down, yet still kill more in US than any other cause

Light switches made of ultra-thin semiconductor layers

Creative talent: has AI knocked humans out?

Sculpting complex, 3D nanostructures with a focused ion beam

A year after undermining Bredt’s rule, UCLA scientists have made cage-shaped, double-bonded molecules that defy expectations

Human activities drive global dryland greening

PeroCycle announces new appointments as it builds a world-class board for meaningful climate impact

Magnetic avalanches power solar flares

LeapSpace goes live: the Research-Grade AI-Assisted Workspace built on trusted science

DNA tests reveal mysterious beluga family trees

Strategic sex: Alaska’s beluga whales swap mates for long-term survival

How early cell membranes may have shaped the origins of life

Cannabis legalization is driving increases in marijuana use among U.S. adults with historically lower consumption rates

Multifunctional dipoles enabling enhanced ionic and electronic transport for high‑energy batteries

Triboelectric nanogenerators for future space missions

Advancing energy development with MBene: Chemical mechanism, AI, and applications in energy storage and harvesting

Heteroatom‑coordinated Fe–N4 catalysts for enhanced oxygen reduction in alkaline seawater zinc‑air batteries

Meta-device for precision lateral displacement sensing

Plasma-guided mitotane for the treatment of adrenocortical carcinoma: adjuvant care to advanced disease

[Press-News.org] Turning industrial exhaust into useful materials with a new electrode