PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New quartet of ant genomes advanced by international collaborative

Coordinated scientific effort accelerates discoveries, genomics-based approaches to understanding social behavior, developing pest management

2011-02-02
(Press-News.org) "Look to the ant thou sluggard and consider her ways and be wise." This proverbial wisdom was taken to heart recently by an international group of ant experts who have published the genome sequences of four ants in a series of coordinated releases in the journal Proceedings of the National Academy of Sciences (PNAS). The quartet includes the genomes of the red harvester ant Pogonomyrmex barbatus; the Argentine ant Linepithema humile; the fire ant Solenopsis invicta, and the leaf-cutter ant Atta cephalotes, whose genome will be published on Feb. 10 in Public Library of Science (PLoS) Genetics..

Perhaps drawing insights from their study organisms, the scientists' distributed yet coordinated effort sped the advancement of these genome projects from sequencing to assembly to annotation to interpretation in less than two years.

Ants are dominant members of almost all terrestrial ecosystems; they are master architects, voracious predators, farmers, ranchers, scavengers and come in a fantastic array of shapes, sizes and colors. Almost all humans have come into contact with ants in one fashion or another. There are fire ants in back yards, Argentine ants in kitchens, harvester ants in children's ant farms, and trains of leaf-cutter ants dismantling forests in documentaries. Ants originated more than 100 million years ago, their ecological dominance and evolutionary success, complex societies, variation in form and function, and the diverse roles they play in ecosystems, collectively contribute to the scientific rationale behind scientists' efforts to sequence their genomes. With more than 14,000 described ant species, and with many thousands yet to be described, it is the diversity of ants, matched with many genome sequences, that researchers believe can solve some fundamental questions in biology.

Much of the impetus behind these studies collaborative efforts grew out of a workshop on ant genomics held at the Center for Social Dynamics and Complexity at Arizona State University in 2009. "Our goal was to sequence 10 ant genomes across the ant family tree and we are well on our way," said Chris R. Smith, an assistant professor at Earlham College in Indiana. "The pace of our progress was also advanced by employment of the same annotation pipeline, MAKER, developed by Mark Yandell's group at the University of Utah." Smith co-organized the ASU workshop with his P. barbatus co-author, Jürgen Gadau, a professor with ASU's School of Life Sciences. These publications bring the total number of sequenced ant genomes to six, all released since 2010.

Lead authors of the four studies, in addition to CR Smith and Gadau for P. barbatus, were Christopher D. Smith (San Francisco State University) and Neil Tsutsui (University of California, Berkeley) for L. humile; Yannick Wurm and Laurent Keller (University of Lausanne), Ioannis Xenarios (Swiss Institute of Bioinformatics) and Dewayne Shoemaker (USDA ARS) for S. invicta; and Garret Suen and Cameron Currie (University of Wisconsin-Madison) for A. cephalotes.

"These publications open the gates to entirely new and highly significant research ventures," said Bert Hoelldobler, Pulitzer Prize-winning co-author of "The Ants," with Edward O. Wilson, and a professor in ASU's College of Liberal Arts and Sciences.

Among these four newly sequenced ant species are two of the world's most damaging invasive species, the Argentine ant, L. humile, and fire ant, S. invicta. Control of these two pest species is a multi-billion dollar per year industry. Both are native to South America, but now can be found worldwide. The ant research community hopes that having the fully sequenced genomes of these ants will help researchers decode both the secrets of their success as invasive species and open avenues for new means for their control.

"Controlling invasive ant populations has long involved pesticides that also hurt native competitors including ants and other insects," said Wurm, lead author on the S. invicta genome. "The genome sequence represents a crucial milestone towards understanding how the members of an ant colony communicate. Ultimately, reverse engineering their communication system might facilitate the development of pesticides that specifically induce workers of a given species to kill their nestmates, while minimizing impact on other species and the environment."

"Argentine ants may seem like only a nuisance to many since they don't sting humans like their compatriot fire ant invaders, but studies have shown that they decimate native arthropods wherever they invade," lead author of the L. humile genome, CD Smith, added. "They also protect crop pests, leading to pesticide use that contaminates waterways and probably human health. With luck, the genome will shed light on how to short circuit the destructive behaviors of both invasive ants"

The other two ant species in this quartet, the harvester ant, P. barbatus, and leafcutter ant A. cephalotes, were sequenced largely because of their unique biology. These two species have queens and workers that differ greatly in size, morphology, physiology, behavior and longevity. Researchers hope to illuminate how ant colonies manage to produce such genetically similar, but vastly different individuals. For example, harvester ant queens may live several decades, but workers only six months. Similarly, the range of sizes of leaf-cutter ant workers varies from smaller than a grain of rice, to as large as a peanut. Scientific studies of these ants have already offered insights into molecular pathways that enable the ants to produce individuals with such differences and allow researchers, such as Gadau and CR Smith, to find those genes that ultimately distinguish queens from workers. CR Smith notes that, "these are the quintessential genes for advanced sociality, the genes that fate an individual to a life of royalty or drudgery." Access to the leaf-cutter genome also offers opportunities to study the molecular underpinnings of a highly complex mutualism. Leaf-cutter ants evolved agriculture more than 10 million years ago. They not only cut leaves as a substrate to grow fungal gardens, but they also use bacteria to increase the intake of nitrogen and fight off harmful (parasitic) fungi.

"The intricate and obligate relationships between the ants and their symbionts are reflected in gene losses in the leaf-cutter ant genome, especially in pathways related to nutrient acquisition and storage, as would be expected when other organisms obligately supply nutrients," said Suen, one of the lead authors of the A. cephalotes genome. "As one of the most ancient forms of non-human agriculture, having access to the leaf-cutter ant genome will also help us understand how this complex behavior evolved. This ant-fungus association led to the development of the immense colony size in these ants, which can contain hundreds of fungus gardens and millions of workers." Colleague and co-author Currie also noted that "having a genome for a leaf-cutter ant will greatly facilitate our ability to understand the molecular underpinnings of this complex agricultural symbiosis."

Ultimately, however, the insights to be gained from the combination of these social insect genomes outweighs the individual contribution of each study, CR Smith said, in keeping with the ant genome researchers' collective, ant-like approach to "the greater good."

Smith's co-author, Gadau, agreed, noting that "large scale genomics analysis within a group of related organisms will also allow the identification of new functional non-coding DNA sequences that play a critical role in the organization of insect societies and phenotypic plasticity in general. This allows social insects to contribute to our understanding of how the environment and genome interact to generate an intricately intertwined society. At the same time, such studies also help us to understand how genomes in general interact with the environment to generate adaptive phenotypes or complex diseases like diabetes which are the result of an interaction between the environment, individual behavior and genes."

For example, these four genomes, taken together, have revealed that the brand of sociality that evolved among ants is different from, but similar to, that which has evolved among bees. By comparisons to the previously published honey bee genome, researchers have independently found that ants have much expanded odorant receptor genes, whereas honey bees have a contracted set, relative to other insects. Ants have the most odorant receptor genes of any insect described to date and this difference likely reflects an increased dependence on and sophistication of chemical communication. On the other hand, both the bees and ants have a relatively depauperate set of innate immunity genes, as compared to other insects, which seems to reflect an increased reliance on social immunity – the processes whereby individuals of a society rely on others to clean and 'de-bug' each other and the nest. All of the ant genomes also contain a complete DNA methylation toolkit. DNA methylation is known to modify the expression of genes, independent of changes in DNA sequence, and is involved in differentiating the developmental pathways of queens and workers in honey bees. Analyses in some of the ant genomes suggest that DNA methylation is also involved in making ant queens and workers different.

The studies' authors noted, "We know bees use DNA methylation to execute caste programs and now have the first hints that ants may too. But even while they appear to have the same genes as bees, it is already clear that they use methylation differently, and that both species use it differently than humans."

The researchers believe that epigenetic processes such as methylation likely also contribute to the astonishing life-span differences between queens (that live more than 20 years) and workers that typically die after several months.

Myrmecology, or the study of ants, has entered the genomic era, according to these four studies' authors. Such advances in genomics will, they believe, allow scientists to ask questions related to pest management, phenotypic plasticity, evolutionary novelty, the interaction of environment and genotype in the production of adaptive phenotypes, kinship and the evolution of sociality, reproductive conflict, disease management in social environments, and other fundamental questions in development, ecology and evolutionary biology. However, the scale of integrating genome knowledge across so many species will also require "databases, new software tools, data-sharing policies and the continuation of the kind of unprecedented cooperation offered by the authors and institutions in these four studies," said Gadau and CR Smith. Perhaps scientists, by following the principles of their social study organisms, by sharing information and resources to tackle complex problems, can hope to fully resolve how ants reign as some of the most successful organisms on Earth.

INFORMATION:

END



ELSE PRESS RELEASES FROM THIS DATE:

Go green, give a boost to employee morale

2011-02-02
In a global recession, most people are thankful to have a job, but a new study published in Interdisciplinary Environmental Review suggests that employees are more likely to be satisfied with their jobs if they are working for a company that is perceived to be "green", whereas the financial performance of companies fails to correlate with employee happiness. Cassandra Walsh and Adam Sulkowski, both of the Charlton College of Business at University of Massachusetts Dartmouth, wanted to know whether employee morale is typically affected when a company is perceived as taking ...

New test to study proteins involved in neurodegenerative diseases

2011-02-02
Researchers from the Institute of Biotechnology and Biomedicine and the UAB Department of Biochemistry and Molecular Biology have developed and patented a method using Saccharomyces cerevisiae yeast to detect in human proteins the formation of oligomers, small toxic aggregations of molecules which can initiate the assembly of amyloid fibres found in neurodegenerative diseases. The test allows validating the efficacy of compounds which could dissolve or inhibit these aggregates, as well as studying at basic level the therapeutic potentiality of a large number of molecules. ...

Home and away: How do invasive plant species dominate native species?

2011-02-02
Invasive plant species present a serious environmental, economic and social problem worldwide as their abundance can lead to lost native biodiversity and ecosystem functions, such as nutrient cycling. Despite substantial research, little is known about why some species can dominate new habitats over native plants that technically should have the advantage. A common but rarely tested assumption is that these plants are more abundant in introduced versus native communities, because they are behaving in special way. If this true and introduced species are behaving in a special ...

Protracted abstinence revisited

2011-02-02
Philadelphia, PA, 1 February 2011 - Opiate abuse is a chronic disorder and maintaining abstinence represents a major challenge for addicts. Individuals recovering from opiate dependence have long reported that while the acute withdrawal symptoms from opiates may pass relatively quickly, they do not feel quite right for several weeks or even months thereafter. Called the "protracted abstinence syndrome," this cluster of vague depressive-like symptoms can include reduced concentration, low energy level, poor sleep quality, and anhedonia. New data in animals, reported ...

2 genes better than 1 for important plant pest

2011-02-02
Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have revealed a novel molecular mechanism that triggers plant infection by Pseudomonas syringae, the bacteria responsible for bacterial speck in tomatoes. The scientists from the Department of Life Sciences at Imperial College London have revealed how two genes in the bacteria work together to launch the infection process that ultimately kills the plant's cells and causes disease, significantly reducing crop quality and yield. Pseudomonas syringae is responsible for major disease ...

A new model for studying Parkinson's

A new model for studying Parkinsons
2011-02-02
Evidence is steadily mounting that genetic factors play an important role in many cases of Parkinson's disease (PD). In a study published February 2, 2011, online in the Journal of Neuroscience, researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland report a new mammalian model for studying a specific gene mutation commonly found in PD sufferers, opening the door to new drugs to fight the malady. "This is a great step forward toward a more comprehensive understanding of how the disease works, and how it can be diagnosed and treated," explains ...

Temporary employment reduces productivity of technology and energy companies

Temporary employment reduces productivity of technology and energy companies
2011-02-02
"Our study proves that one of the leading factors affecting progress in Spanish productivity is the high rate of temporary hiring among workers in highly technologically intense industries. These sectors are also those that most contribute to overall productivity growth (of all sectors) in the country's economy", Bienvenido Ortega, co-author of the study and a researcher at the UMA, tells SINC. The 1984 overhaul of Spain's employment legislation led to the possibility of various forms of temporary contracting, and since further reforms in 1994, 1997 and 2001, the use ...

'Negative democratic gap' serves as predictor for instability such as in Egypt, say Hebrew University researchers

2011-02-02
Jerusalem, February 1, 2011-- Research carried out at the Hebrew University of Jerusalem shows that it was possible already in 2008 to predict that countries such as Egypt and Iran were headed for dangerous periods of instability because of citizens' demands for democratization. The researchers were able to make this observation on the basis of a "democratic gap" scale of measurement between the level of freedom existing and the desire of citizens for more freedom, which was analyzed in about 90 countries around the world. In their research, Prof. Tamir Sheafer ...

Scientists make key step in the development of a norovirus treatment

Scientists make key step in the development of a norovirus treatment
2011-02-02
With the number of norovirus infection cases rising across the country, scientists from the University of Southampton have successfully crystallised a key norovirus enzyme, which could help in the development of a norovirus treatment. Noroviruses are recognised world-wide as the most important cause of epidemic nonbacterial gastroenteritis (stomach bugs) and pose a significant public health burden, with an estimated one million cases per year in the UK. In the past, noroviruses have also been called 'winter vomiting viruses'. By crystallising the key protease enzyme, ...

Maturitas publishes important position statements from European Menopause and Andropause Society

2011-02-02
Amsterdam, 1 February 2011 - Elsevier announced today the publication of two further important position statements from the European Menopause and Andropause Society (EMAS) in the journal Maturitas (http://www.maturitas.org/ ) on common management problems in the post-reproductive health of women. EMAS is providing clear guidance in its position statements covering both hormone and non hormone therapy (HT) options as well as complementary and alternative therapies . The latest two position statements cover the management of the menopause in the context of Cardiovascular ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] New quartet of ant genomes advanced by international collaborative
Coordinated scientific effort accelerates discoveries, genomics-based approaches to understanding social behavior, developing pest management