PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

NIH-sponsored research yields promising malaria drug candidate

In mice, compound cleared malaria parasites quickly

2010-09-04
(Press-News.org) A chemical that rid mice of malaria-causing parasites after a single oral dose may eventually become a new malaria drug if further tests in animals and people uphold the promise of early findings. The compound, NITD609, was developed by an international team of researchers including Elizabeth A. Winzeler, Ph.D., a grantee of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

"Although significant progress has been made in controlling malaria, the disease still kills nearly 1 million people every year, mostly infants and young children," says NIAID Director Anthony S. Fauci, M.D. "It has been more than a decade since the last new class of antimalarials—artemisinins—began to be widely used throughout the world. The rise of drug-resistant malaria parasites further underscores the need for novel malaria therapies."

Dr. Fauci adds, "The compound developed and tested by Dr. Winzeler and her colleagues appears to target a parasite protein not attacked by any existing malaria drug, and has several other desirable features. This research is also a notable example of successful collaboration between government-supported scientists and private sector researchers."

The study, in the Sept. 3 issue of Science, was led by Thierry T. Diagana, Ph.D., of the Novartis Institute for Tropical Diseases (NITD), and Dr. Winzeler. Dr. Winzeler is affiliated with The Scripps Research Institute and the Genomic Institute of the Novartis Research Foundation, La Jolla, Calif.

Work on what eventually became NITD609 began in Dr. Winzeler's lab in 2007. Scientists screened 12,000 chemicals using an ultra-high throughput robotic screening technique customized to detect compounds active against Plasmodium falciparum, the most deadly malaria parasite. The screen identified a chemical with good parasite-killing abilities and the potential to be modified into a drug. Medicinal chemists at the NITD then synthesized and evaluated about 200 versions of the original compound to arrive at NITD609, which could be formulated as a tablet and manufactured in large quantities. NITD609 is one of a new class of chemicals, the spiroindolones, which have been described in recently published research by Dr. Winzeler and colleagues as having potent effects against two kinds of malaria parasites.

"From the beginning, NITD609 stood out because it looked different, in terms of its structure and chemistry, from all other currently used antimalarials," says Dr. Winzeler. "The ideal new malaria drug would not just be a modification of existing drugs, but would have entirely novel features and mechanism of action. NITD609 does."

In the current study, the scientists detail attributes of NITD609 that suggest it could be a good malaria drug. For example

In test-tube experiments, NITD609 killed two species of parasites in their blood-stage form and also was effective against drug-resistant strains. In humans, malaria parasites spend part of their life cycle in the blood and part in the liver. The compound worked faster than some older malaria drugs, although not as quickly as the best current malaria drug, artemisinin. Other laboratory tests showed that NITD609 is not toxic to a variety of human cells.

When given orally to rodents, the compound stayed in circulation long enough to reach levels predicted to be effective against malaria parasites. According to Dr. Winzeler, if NITD609 behaves similarly in people, it might be possible to develop the compound into a drug that could be taken just once. Such a dosage regimen, she says, would be substantially better than the current standard treatment in much of the world in which uncomplicated malaria infections are treated for three to seven days with drugs that are taken between one and four times daily.

"We were excited by the potential NITD609 showed in the first series of test-tube experiments," says Dr. Winzeler. "We became even more enthusiastic when our co-investigators at the Swiss Tropical Institute in Basel tested NITD609 in a mouse model of malaria."

Typically, she says, rodents infected with the mouse malaria parasite, Plasmodium berghei, die within a week. But a single large dose of NITD609 cured all five infected mice that received it, while half of six mice receiving a single smaller dose were cured of infection. Three doses of the smaller amount of NITD609 upped the cure rate to 90 percent.

The researchers also compared NITD609 with other malaria drugs in P. berghei-infected mice. "No other currently used malaria drug was as potent," says Dr. Winzeler. NITD609's effectiveness in relatively few doses is a key point in its favor, she adds. A novel malaria drug that works in as few doses as possible leaves less opportunity for parasites to develop drug resistance.

Additional tests in animals are under way and NITD609 could enter early-stage safety testing in humans later this year, says Dr. Winzeler. But, she adds, many drug candidates fail in clinical trials and thus it will be important for the community to continue to work on developing other potential antimalarial compounds.

To learn how parasites might develop resistance to this potential drug, the researchers also exposed parasites to sublethal levels of NITD609 continuously for several months until drug-resistant strains emerged. Then they analyzed those strains and determined that resistance results from a single change in one of the parasite's genes. The gene contains the code to make a protein called PfATP4, which allows substances to cross cell membranes. No other anti-malaria drugs act on the PfATP4 protein, notes Dr. Winzeler. Having information in hand about the genetic basis for NITD609 resistance at this early stage of the compound's development is advantageous, she adds, because it will allow scientists to rapidly detect drug-resistant strains in clinical settings if the compound is eventually approved as a drug for human use.

INFORMATION: More information about malaria and NIAID's research programs on the disease is available on the NIAID malaria Web portal at http://www.niaid.nih.gov/topics/malaria/Pages/default.aspx.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

References:

M Rottmann et al. Spiroindolones, a new and potent chemotype for the treatment of malaria. Science DOI: 10.1126/science.1193225 (2010).

BKS Yeung et al. Spirotetrahydro β-carbolines (Spiroindolones): A new class of potent and orally efficacious compounds for the treatment of malaria. J. of Medicinal Chemistry DOI: 10.1021/jm100410f (2010).


ELSE PRESS RELEASES FROM THIS DATE:

The secret to fish oil's anti-inflammatory properties

2010-09-04
Fish oil is touted for its anti-inflammatory and anti-diabetic benefits, but scientist weren't sure how the omega-3 fatty acids in fish oil work. Now, according to a report in the September 3rd issue of the journal Cell, scientists have nailed how omega-3 fatty acids both shut down inflammation and reverse diabetes in obese mice. Omega-3s alleviate inflammation by acting on a receptor (GPR120) found in fat tissue and on inflammatory immune cells called macrophages, studies in mice show. "Omega-3s are very potent activators of GPR120 on macrophages -- more potent than ...

Team discovers new type of anti-malarial compound

2010-09-04
LA JOLLA, CA – August 30, 2010 –– An international team led by scientists from The Scripps Research Institute, the Swiss Tropical Institute, the Genomics Institute of the Novartis Research Foundation and the Novartis Institute for Tropical Diseases has discovered a promising new drug candidate that represents a new class of drug to treat malaria. Clinical trials for the compound are planned for later this year. The research was published on September 3, 2010, in the prestigious journal Science. "We're very excited by the new compound," said Elizabeth Winzeler, a Scripps ...

Study finds that cancer-causing gene crucial in stem cell development

2010-09-04
Athens, Ga. – Stem cells might be thought of as trunks in the tree of life. All multi-cellular organisms have them, and they can turn into a dazzling variety other cells—kidney, brain, heart or skin, for example. One class, pluripotent stem cells, has the capacity to turn into virtually any cell type in the body, making them a focal point in the development of cell therapies, the conquering of age-old diseases or even regrowing defective body parts. Now, a research team at the University of Georgia has shown for the first time that a gene called Myc (pronounced "mick") ...

New warning signs may predict kidney transplant failure

2010-09-04
Kidney transplants that show a combination of fibrosis (scarring) and inflammation after one year are at higher risk of long-term transplant failure, according to a study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN). To identify these abnormalities, doctors would need to perform routine biopsies on apparently normal kidney transplants—rather than waiting for problems to occur. "Even for some transplants that would be expected to have a very long graft survival, protocol biopsies performed in the first year may indicate the ...

Why fish oils work swimmingly against diabetes

Why fish oils work swimmingly against diabetes
2010-09-04
Researchers at the University of California, San Diego School of Medicine have identified the molecular mechanism that makes omega-3 fatty acids so effective in reducing chronic inflammation and insulin resistance. The discovery could lead to development of a simple dietary remedy for many of the more than 23 million Americans suffering from diabetes and other conditions. Writing in the advance online edition of the September 3 issue of the journal Cell, Jerrold Olefsky, MD, and colleagues identified a key receptor on macrophages abundantly found in obese body fat. ...

Serendipity contributes to MRSA susceptibility findings

2010-09-04
DURHAM, N.C. – Duke University Medical Center researchers have found two genes in mice which might help identify why some people are more susceptible than others to potentially deadly staph infections. The researchers uncovered important genetic clues that ultimately could help inform patient management and drug development. "If you know up front that a patient is at risk for developing an Staphylococcus aureus infection, then you will be better able to manage them clinically, give them preventive measures, and treat them more aggressively if they become ill," said ...

Pivotal study finds link between PTSD and dementia

2010-09-04
Results of a study reported in the September issue of the Journal of the American Geriatrics Society suggest that Veterans with post-traumatic stress disorder (PTSD) have a greater risk for dementia than Veterans without PTSD, even those who suffered traumatic injuries during combat. Exposure to life threatening events, like war, can cause PTSD, and there are high rates among veterans. PSTD includes symptoms such as avoiding things or people that remind a person of the trauma, nightmares, difficulty with sleep, and mood problems. "We found Veterans with PTSD had ...

Risk of marijuana's 'gateway effect' overblown, new UNH research shows

2010-09-04
DURHAM, N.H. – New research from the University of New Hampshire shows that the "gateway effect" of marijuana – that teenagers who use marijuana are more likely to move on to harder illicit drugs as young adults – is overblown. Whether teenagers who smoked pot will use other illicit drugs as young adults has more to do with life factors such as employment status and stress, according to the new research. In fact, the strongest predictor of whether someone will use other illicit drugs is their race/ethnicity, not whether they ever used marijuana. Conducted by UNH associate ...

Carlos '97 free kick no fluke, say French physicists

2010-09-04
Roberto Carlos' free kick goal against France in 1997's Tournoi de France is thought by many to have been the most skilful free kick goal - from 35m with a powerful curling banana trajectory - ever scored; but by others to have been an incredible fluke. Taken in 1997, a year before the French won the World Cup, Brazilian Carlos's goal held France to a frustrating draw but, now, a group of French physicists – perhaps with a nostalgic eye to a happier time for French football – have computed the trajectory and shown that Carlos' goal was no fluke. The research published ...

Brainy worms: Evolution of the cerebral cortex

Brainy worms: Evolution of the cerebral cortex
2010-09-04
Heidelberg, 3 September 2010 – Our cerebral cortex, or pallium, is a big part of what makes us human: art, literature and science would not exist had this most fascinating part of our brain not emerged in some less intelligent ancestor in prehistoric times. But when did this occur and what were these ancestors? Unexpectedly, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now discovered a true counterpart of the cerebral cortex in an invertebrate, a marine worm. Their findings are published today in Cell, and give an idea of what ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] NIH-sponsored research yields promising malaria drug candidate
In mice, compound cleared malaria parasites quickly