(Press-News.org) Scientists at the UCSF Cardiovascular Research Institute have discovered how a change in growth hormone activity in mice leads to fatty liver disease, a condition whose human counterpart is of rising concern worldwide.
Disruption of a key protein in the pathway that responds to growth hormone could explain how fatty liver disease develops, the researchers said, but may also offer insights into how our bodies regulate fat in general.
The team's findings and the first reports of a mouse model to study the pathway will appear in the April issue of the Journal of Clinical Investigation and online March 1 at www.jci.org.
Until recently, the growth of fat deposits in the liver that characterizes fatty-liver disease was mainly considered a result of alcoholism. Over the last decade, though, scientists have been baffled by the rising incidence of the non-alcoholic version of the disease, which now affects as many as one in four people worldwide, according to UCSF cardiologist Ethan Weiss, MD, senior author of the paper.
Known risk factors for the condition include obesity, diabetes and malnutrition, among many others, but its precise mechanism had eluded researchers.
"Fatty liver disease is an increasingly prevalent condition that is poorly understood," Weiss said. "We knew that growth hormone had been linked to fatty liver, but previous reports showed that it both causes and cures the condition. We set out to figure out why that happens."
The team focused on a protein in the liver known as JAK2. While better known as being linked to cancers such as blood cancers, this protein is also a key player in an important chemical pathway in the liver.
Normally, the pituitary gland secretes growth hormone, which communicates with JAK2 and sets off a series of steps to produce insulin-like growth factor 1 (IGF-1), an important mediator of growth and other effects. It was common knowledge that disrupting this pathway would halt IGF-1 production, but in their analysis, Weiss and his team found that disrupting the pathway also caused fatty liver disease.
The team engineered a mouse model in which the gene producing JAK2 had been removed solely in the liver, disrupting the pathway that produces the insulin-like growth factor. As expected, the levels of growth factor in these mice were low or nonexistent and the mice developed early and severe fatty-liver disease. Further analysis showed that another protein, called CD36, was working in the liver to draw in the fat in the JAK2-deficient mice.
The amount of growth hormone secreted by the pituitary gland also was dramatically elevated. The team realized that low IGF-1 levels were sending the pituitary gland into overdrive, secreting more growth hormone in order to jumpstart the growth factor's production. But without JAK2, the signaling pathway was broken and IGF-1 production was at a standstill.
That explained the low growth factor levels, but not the fatty livers. The team then took advantage of a second set of mice with no capability of producing growth hormone, which is known to activate energy from fat stores. When crossing the JAK2-deficient mice with the growth hormone-deficient "little" mice, the researchers noticed a huge difference in the offspring.
"We saw a complete disappearance of the fatty liver in these offspring," he said. "It was just gone."
The team concluded that the growth hormone signaling pathway is not only essential in producing IGF-1 and mobilizing fat, but in regulating how fat is taken up by the liver.
This newfound understanding has huge implications for understanding and treating fatty liver disease in humans, Weiss said, such as the possibility of developing a therapeutic drug that works within this pathway.
INFORMATION:
Brandon C. Sos, from the UCSF Cardiovascular Research Institute, was lead author on the paper. Co-authors include Sarah M. Nordstrom and Jennifer L. Tran, also from the UCSF Cardiovascular Research Institute; Charles Harris, from the UCSF Division of Endocrinology and the UCSF-affiliated Gladstone Institute of Cardiovascular Diseases; Mercedesz Balázs and Patrick Caplazi, from Genentech, a subsidiary of Roche Group, South San Francisco, California; Maria Febbraio and Milana A.B. Applegate, of the Lerner Research Institute of the Cleveland Clinic, Cleveland, OH; and Kay-Uwe Wagner, of the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.
This research was funded in part by grants from the UCSF Liver Center and the National Institutes of Health (NIH). The authors declare no conflicts of interest.
UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For more information, visit www.ucsf.edu.
END
LA JOLLA, Calif., March 1, 2011 – When patients receive a bone marrow transplant, they are getting a new population of hematopoietic stem cells. Fresh stem cells are needed when a patient is low on red blood cells, as in anemia, or white blood cells, which can be caused by cancer or even cancer treatments such as irradiation or chemotherapy. The problem is that a bone marrow transplant might not succeed because the transplanted stem cells don't live long enough or because they proliferate too well, leading to leukemia.
To help determine how long a bone marrow (stem ...
A pioneering program by one of the world's largest cities to switch its vehicle fleet to clean fuel has not significantly improved harmful vehicle emissions in more than 5,000 vehicles – and worsened some vehicles' climate impacts – a new University of British Columbia study finds.
The study – which explores the impacts of New Delhi, India's 2003 conversion of 90,000 buses, taxis and auto-rickshaws to compressed natural gas (CNG), a well-known "clean" fuel – provides crucial information for other cities considering similar projects.
Of the city's more than 5,000 auto-rickshaws ...
Researchers at Karolinska Institutet have shown in a new study on mice, that cell therapy can be used to reverse the effect of 'bad' LDL cholesterol and reduce the inflammation that leads to atherosclerosis. The new cell therapy, which is presented in the prestigious scientific journal Circulation, can open the way for new therapies for stroke and myocardial infarction if the results prove translatable to humans.
Atherosclerosis is a chronic inflammation of the blood vessels. Cholesterol is transported in the blood in particles called LDL ('bad' cholesterol) that can ...
A new non-surgical post-mortem technique that has the potential to revolutionise the way autopsies are conducted around the world has been pioneered by forensic pathologists and radiologists at the University of Leicester in collaboration with the University Hospitals of Leicester NHS Trust.
The technique developed by a team in the East Midlands Forensic Pathology Unit, at the University of Leicester, has been published today (1 March) in International Journal of Legal Medicine. This paper presents the development of the methodology and protocol for this technique from ...
There are already systems that detect ships at sea, but a group of engineers from the UAH, led by the researcher Raúl Vicen, has introduced a new development, involving "the use of artificial intelligence techniques and improvements in the templates used to select input data".
The team has come up with a new detection method "that outperforms the one that has generally been used until now, as well as offering the advantages of low computational costs, and which can also be used in real time".
The new system, the details of which are published in the journal IET Radar, ...
Pioneering technology by scientists at Queen's University Belfast, which is transforming the lives of millions of people in Asia, is now being used to create safer drinking water in the United States.
The award-winning system – Subterranean Arsenic Removal – removes arsenic from groundwater without using chemicals. It was developed by a team of European and Indian engineers led by Dr Bhaskar Sen Gupta in Queen's University School of Planning, Architecture and Civil Engineering.
The technology, based on the principle of oxidation and filtration processes, is already ...
Scientists have discovered a new way to generate human motor nerve cells in a development that will help research into motor neurone disease.
A team from the Universities of Edinburgh, Cambridge and Cardiff has created a range of motor neurons – nerves cells that send messages from the brain and spine to other parts of the body – from human embryonic stem cells in the laboratory.
It is the first time that researchers have been able to generate a variety of human motor neurons, which differ in their make-up and display properties depending on where they are located in ...
By examining historical data, statisticians in the College of Science at Virginia Tech have quantified biases that play a role in granting Division I at-large basketball teams inclusion in the NCAA March Madness Tournament.
Assistant professors Leanna House and Scotland Leman found that in addition to the standard Ratings Percentage Index (RPI) used by the 10-member selection committee, biases such as the team's marquee and the strength of its schedule are also factors.
"We wanted to quantify how much bias there is for bubble teams," Leman said. So-named "bubble teams" ...
New Haven, Conn.—Imagine a material that's stronger than steel, but just as versatile as plastic, able to take on a seemingly endless variety of forms. For decades, materials scientists have been trying to come up with just such an ideal substance, one that could be molded into complex shapes with the same ease and low expense as plastic but without sacrificing the strength and durability of metal.
Now a team led by Jan Schroers, a materials scientist at Yale University, has shown that some recently developed bulk metallic glasses (BMGs)—metal alloys that have randomly ...
Scientists have discovered how tendons – the fibrous tissue that connects muscle to bone – become damaged through injury or the ageing process in what could lead to new treatments for people with tendon problems.
The University of Manchester team, working with colleagues at Glasgow University, have been investigating 'adhesions', which are a build up of unwanted fibrous tissue on internal organs that have been damaged as a result of surgery or injury.
Adhesions cause organs to stick together and are extremely painful and distressing for patients, who often have to undergo ...