PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New microscope produces dazzling 3-D movies of live cells

2011-03-05
(Press-News.org) A new microscope invented by scientists at Howard Hughes Medical Institute's Janelia Farm Research Campus will let researchers use an exquisitely thin sheet of light -- similar to that used in supermarket bar-code scanners -- to peer inside single living cells, revealing the three-dimensional shapes of cellular landmarks in unprecedented detail. The microscopy technique images at high speed, so researchers can create dazzling movies that make biological processes, such as cell division, come alive.

The technique, called Bessel beam plane illumination microscopy, is described in a research article published online on March 4, 2011, in the journal Nature Methods.

A major goal of biologists is to understand the rules that control molecular processes inside a cell. If one is trying to learn the rules of a game, it is better to have a movie of people playing the game than it is to have still photos — and the same is true for cells, says Janelia Farm group leader Eric Betzig. He has been inventing and improving microscopes for more than 30 years. Despite having seen huge advances in microscopy during that time, Betzig says the field is still hindered by the fact that many microscopy techniques require that cells be killed and fixed in position for imaging. There is only so much one can learn from studying dead cells – the equivalent of still photos, he says.

Betzig wanted to create a microscope that would let researchers see the dynamic inner lives of living cells. The notion of studying live cells, stippled with fluorescently labeled proteins and other molecules, is not new. But live-cell techniques can be problematic because light produced by microscopes can damage the cell over time. Besides cell damage, light causes the fluorescent molecules --of which there are only so many -- to wink out over time. In other words, the longer you study the cell to uncover its properties, the more damage you do to the cell and the more likely you are to spend your "photon budget," Betzig says.

What's more, the light of a microscope exposes more of the sample than just the small portion that is in focus. Illuminating the out-of-focus regions produces blur, making small intracellular features appear as lengthened blobs rather than sharp dots. "The question was, is there a way of minimizing the amount of damage you're doing so that you can then study cells in a physiological manner while also studying them at high spatial and temporal resolution for a long time?" Betzig says.

Long before arriving at Janelia Farm in 2006, Betzig began thinking about ways to improve live-cell microscopy. He put those thoughts on hold while he focused on designing new microscopy techniques that would ultimately shatter the limits of spatial resolution (imposed by the laws of diffraction). Until recently, microscopes could see objects no smaller than 200 nanometers in size. Several years ago, Betzig and his Janelia Farm colleague Harald Hess invented photoactivated localization microscopy, PALM, which can produce images of objects only 10-20 nanometers in size.

PALM and most other microscopes — even the ones college students use in their biology classes —work by exposing the sample through one objective lens and then collecting the light that comes back through that same lens. That approach causes light to damage the sample and induces blur, making it difficult to observe live cells.

In 2008, Betzig began working on ways to overcome these challenges. One idea he had was to use plane illumination microscopy. First proposed about 100 years ago, plane illumination involves shining a sheet of light through the side of the sample rather than the top. To do that, microscopists use two different objective lenses that are perpendicular to one another. "Because you come from the side, plane illumination confines the excitation much closer to the part that's in focus," Betzig says.

Although other researchers, including Janelia Farm Fellow Philipp Keller, have used plane illumination to great effect to study multicellular organisms hundreds of microns in size, the light sheets were still too thick to work effectively for imaging within single cells only tens of microns in size. The main problem is that the wide swath of light used in plane illumination exposed more of the cell than Betzig's group wanted. This caused excessive blur and light toxicity. To circumvent this problem, his group used a Bessel beam, a special type of non-diffracting light beam studied by physicists in the late 1980s, and used today in applications including bar-code scanners in supermarkets. Sweeping the beam across the sample creates a thinner light sheet, his group found.

Bessel beams behave a bit strangely, though, and this is what has kept Betzig's postdoctoral researchers — Thomas Planchon and Liang Gao — busy over the past few years. Although they produce a very narrow light beam, Bessel beams also create somewhat weaker light that flanks the focal point, making the pattern of illumination look like a bull's eye. The extra light lobes are a hindrance because they excite too much of the sample. To compensate for this problem, Betzig's group used two tricks. The first is a concept called structured illumination, where instead of sweeping the beam continuously, they turned it on and off rapidly, like firing a machine gun. This creates a periodic grating of excitation that can be used to eliminate any out-of-focus blur. (Structured illumination, used by Janelia Farm Group Leader Mats Gustafsson, is also one way of achieving super-resolution.)

Another strategy Betzig's group used is two-photon microscopy, a method commonly used in neuroscience to visualize thick pieces of brain tissue. One of the advantages of two-photon microscopes is that very little fluorescence signal is generated from weakly exposed regions. Thus, when they applied two-photon methods, the background from the Bessel side lobes was eliminated, and all that remained was the light from the narrow central part of the Bessel beam.

They then set out to image as fast as possible. The Bessel beam sweeps quickly through the sample, allowing the group to take nearly 200 images/second and build three-dimensional stacks from hundreds of two-dimensional images in one to 10 seconds. As they had hoped, they found that they could take hundreds of such three-dimensional image sets without harming the cell, generating amazing movies of cellular processes such as mitosis, where chromosomes divide as one cell becomes two. "There's no other technique that comes close to imaging as long with such high spatial and temporal detail," Betzig says.

Last summer, as soon as they got their first live cell images, Betzig, Planchon and Gao packed up the new instrument in a rented sport utility vehicle and took it to the Woods Hole Marine Biological Laboratory in Massachusetts for a physiology course, where they worked with co-authors Jim and Cathy Galbraith from the National Institutes of Health. "We learned a lot about what works and what doesn't and ways to treat the cells in a way that maintains their physiological state while we're doing the imaging," he says. "Like every microscope, the instrumentation is only part of the puzzle. A lot of it is finding the right samples, and right preparation methods to make it work."

The new microscope is also exciting because it may be used in the future to improve super-resolution microscopy. PALM and other super-resolution techniques are limited to looking at thin, dead samples, and can be very damaging when looking at live ones. "That's what's really great about the Bessel — we can confine that excitation and really start to think about applying super-resolution microscopy to study structure or dynamics in thicker cells," says Betzig. Even without super-resolution, Bessel beam plane illumination microscopy will be a powerful tool for cell biologists, Betzig says, since it noninvasively images the rapidly evolving three-dimensional complexity of cells.

INFORMATION:

END



ELSE PRESS RELEASES FROM THIS DATE:

Boosting protein garbage disposal in brain cells protects mice from Alzheimer's disease

2011-03-05
Washington, D.C. – Gene therapy that boosts the ability of brain cells to gobble up toxic proteins prevents development of Alzheimer's disease in mice that are predestined to develop it, report researchers at Georgetown University Medical Center. They say the treatment – which is given just once - could potentially do the same in people at the beginning stages of the disease. The study, published online in Human Molecular Genetics, demonstrates that giving brain cells extra parkin genes promotes efficient and effective removal of amyloid particles believed to be destroying ...

Supercritical carbon dioxide Brayton Cycle turbines promise giant leap

2011-03-05
ALBUQUERQUE, N.M. — Sandia National Laboratories researchers are moving into the demonstration phase of a novel gas turbine system for power generation, with the promise that thermal-to-electric conversion efficiency will be increased to as much as 50 percent — an improvement of 50 percent for nuclear power stations equipped with steam turbines, or a 40 percent improvement for simple gas turbines. The system is also very compact, meaning that capital costs would be relatively low. Research focuses on supercritical carbon dioxide (S-CO2) Brayton-cycle turbines, which typically ...

Sink or source? A new model to measure organic carbon in surface waters

2011-03-05
A new carbon model allows scientists to estimate sources and losses of organic carbon in surface waters in the United States. Study results indicate that streams act as both sources and sinks for organic carbon. "Model estimates help managers and researchers track carbon transport in streams, which is information that is ultimately needed to improve our understanding of the fate of rising carbon dioxide levels in the atmosphere," said Dr. Richard Smith, a USGS hydrologist and coauthor of the study. "The study contributes new information on the role of rivers as sources ...

Vaccinated children not at higher risk of infections or allergic diseases

2011-03-05
May vaccinations put too much strain on or weaken children's immune systems and are therefore harmful? Roma Schmitz and her colleagues from the Robert Koch Institute investigate exactly this research question in the current issue of Deutsches Ärzteblatt International (Dtsch Arztebl Int 2011; 108(7): 105-11). Their data are based on the results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). In their study, the authors compare the occurrence of infections and allergies in vaccinated and unvaccinated children and adolescents. These ...

The better off sleep better

2011-03-05
Analysis of the early data from Understanding Society based on 14,000 UK households found that overall the best sleep was reported by people with higher levels of education and by married people. The type of work a person does also impacts on sleep, with those in routine occupations reporting worse sleep than those in professional occupations. Professor Sara Arber at the University of Surrey who analysed the findings said: "Given the links between sleep, social and economic circumstances and poor health found in this and other surveys, health promotion campaigns should ...

The scars of impacts on Mars

The scars of impacts on Mars
2011-03-05
ESA's Mars Express has returned new images of an elongated impact crater in the southern hemisphere of Mars. Located just south of the Huygens basin, it could have been carved out by a train of projectiles striking the planet at a shallow angle. The large Huygens basin (not visible in the main image but seen in the wider contextual image) is about 450 km in diameter and lies in the heavily cratered southern highlands. In this area there are many impact scars but none perhaps are more intriguing than the 'elongated craters'. One of these craters is seen in this new image, ...

Zooming in on the weapons of Salmonella

2011-03-05
Some of the most dreaded diseases in the world such as plague, typhoid and cholera are caused by bacteria that have one thing in common: they possess an infection apparatus which is a nearly unbeatable weapon. When attacking a cell of the body, they develop numerous hollow-needle-shaped structures that project from the bacterial surface. Through these needles, the bacteria inject signal substances into the host cells, which re-program the latter and thereby overcome their defense. From this time on it's easy game for the pathogens; they can invade the cells unimpeded and ...

BNCT, a new-generation radiation treatment, is effective in advanced head and neck cancer

2011-03-05
Biologically targeted BNCT treatment is based on producing radiation inside a tumour using boron-10 and thermal neutrons. Boron-10 is introduced into cancer cells with the help of a special carrier substance (phenylalanine), after which the tumour is irradiated with lowenergy neutrons. The latter react with the boron to generate high-LET radiation, which may destroy the cancer cells. One to two BNCT treatment sessions may be sufficient to destroy a tumour, while keeping the impact of radiation on surrounding healthy tissue to a minimum. A research reactor is currently ...

Racial identity tied to happiness, study finds

Racial identity tied to happiness, study finds
2011-03-05
EAST LANSING, Mich. — Black people who identify more strongly with their racial identity are generally happier, according to a study led by psychology researchers at Michigan State University. The study, funded by the National Institute of Mental Health, appears in the current issue of Cultural Diversity and Ethnic Minority Psychology, a research journal published by the American Psychological Association. "This is the first empirical study we know of that shows a relationship between racial identity and happiness," said Stevie C.Y. Yap, doctoral candidate in psychology ...

Some overweight adolescents may be at risk for weak bones

Some overweight adolescents may be at risk for weak bones
2011-03-05
AUGUSTA, Ga. - Overweight adolescents already struggling with risk factors such as insulin resistance may need to add weak bones to their list of health concerns, researchers report. A study of 143 overweight 14-18 year olds showed those with risk factors such as the precursor for diabetes and low levels of the blood-vessel protecting HDL cholesterol have less bone mass – an indicator of bone strength – than their overweight but otherwise healthy peers, according to researchers at Georgia Health Sciences University's Georgia Prevention Institute. Other risk factors ...

LAST 30 PRESS RELEASES:

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

[Press-News.org] New microscope produces dazzling 3-D movies of live cells