PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scripps Research and MIT scientists discover class of potent anti-cancer compounds

2011-03-08
(Press-News.org) LA JOLLA, CA, AND JUPITER, FL – March 7, 2011 – Embargoed by the journal PNAS until March 7, 2011, 3 PM, Eastern time –Working as part of a public program to screen compounds to find potential medicines and other biologically useful molecules, scientists from The Scripps Research Institute and Massachusetts Institute of Technology (MIT) have discovered an extremely potent class of potential anti-cancer and anti-neurodegenerative disorder compounds. The scientists hope their findings will one day lead to new therapies for cancer and Alzheimer's disease patients.

The research—scheduled for publication in the journal Proceedings of the National Academy of Sciences (PNAS) the week of March 7, 2011—was led by Benjamin F. Cravatt III, professor and chair of the Department of Chemical Physiology at Scripps Research and a member of its Skaggs Institute for Chemical Biology, and MIT chemistry professor Gregory Fu.

"It was immediately clear that a single class of compounds stood out," said Daniel Bachovchin, a graduate student in the Cravatt lab and the study's first author. "The fact that these compounds work so potently and selectively in cancer cells and mice, right off the screening deck and before we'd done any medicinal chemistry, is very encouraging and also very unusual."

Browsing in the Public Library The National Institutes of Health (NIH) Common Fund Molecular Libraries Program currently funds nine screening and medicinal chemistry-related centers at academic institutions around the United States to enable scientists to find biologically interesting molecules, independently of commercial labs (http://mli.nih.gov/mli/mlpcn/mlpcn-probe-production-centers/). In these centers, academic scientists can test thousands of compounds at once through high-throughput screens against various biological targets to uncover "proof-of-concept" molecules useful in studying human health and in developing new treatments for human diseases.

"Initially the compounds in the NIH Molecular Libraries repository were purchased from commercial sources and augmented through chemical diversity initiatives," explained Ingrid Y. Li, director of the Molecular Libraries Program at the NIH National Institute of Mental Health (NIMH). "In recent years we've also encouraged academics to donate structurally unusual compounds, to add novelty to the library." (See http://mli.nih.gov/mli/compound-repository/.)

In 2008, Fu's lab donated a set of molecules known as aza-beta-lactams (ABLs)— molecular cousins of penicillin and other beta-lactam antibiotics. "These were molecules that probably didn't exist in commercial compound libraries, and their bioactivity had been virtually unexplored," said Fu.

Meanwhile, across the country, in the Cravatt lab at Scripps Research campus in La Jolla, California, Bachovchin was developing an unusually fast and flexible test for enzyme activity, using fluorescent molecular probes that bind to an enzyme's active site. Researchers can use such tests to measure whether an enzyme of interest loses its activity in the presence of another chemical compound. Bachovchin, Cravatt, and their colleagues decided to apply the new technique to the NIH compound library, to find an inhibitor for an enzyme known as PME-1 (phosphatase methylesterase 1).

Long seen as a potential high-value drug target, PME-1 chemically modifies a growth-slowing enzyme, known as PP2A, in a way that negates PP2A's ability to serve as a tumor suppressor. Studies have shown that when PME-1 production is reduced in some kinds of brain cancer cells, the tumor-suppressing activity of PP2A increases, and cancerous growth is slowed or stopped. Researchers also have found hints that PME-1 might play a role in promoting Alzheimer's disease, by regulating PP2A's ability to dephosphoryate the Alzheimer's-associated tau protein.

"Despite its importance, no one had been able to develop a PME-1 inhibitor, mainly because standard substrate assays for the enzyme were difficult to adapt for high-throughput screening," said Cravatt. "But we believed that we could use our new 'substrate-free' screening technology for PME-1; and we knew that we needed to try a large, high-throughput screen, because our small-scale efforts to find PME-1 inhibitors had come up empty."

Scripps Research runs an NIH Molecular Libraries Program screening center at its Jupiter, Florida campus. There, the institute's researchers set up an automated version of Bachovchin's new screening technique and used it to search for strong PME-1 inhibitors among the 300,000-plus small-molecule compounds in the NIH library.

Super Potent, Super Selective Like many molecules, ABLs can exist in two mirror-image versions, known as enantiomers, and they usually are synthesized as an equal mixture of both compounds. But Fu and his group had used new chemistry techniques to produce the ABLs in an "enantiomerically selective" way, in case one enantiomer of a compound had more activity than its mirror-image twin. And, in fact, one of these enantiomeric molecules, ABL127, turned out to fit so precisely into a nook on PME-1 that it completely blocked PME-1 activity in cell cultures and in the brains of mice. Aside from being extremely potent, it also was highly selective for PME-1, so that even at higher doses, it had negligible effects on other enzymes in the PME-1 family, known as serine hydrolases. In mice, ABL127's inhibition of PME-1 activity caused a more than one-third drop in the measured level of demethylated ("inactive") PP2A.

The Cravatt and Fu labs are now working together to synthesize more ABLs and explore their chemistry, looking for the best possible PME-1 inhibitor. The near-term goal is to use ABL127 as a scientific probe to study PME-1 functions in animals. A longer-term goal is to develop ABL127, or related compounds, as potential oncology or Alzheimer's disease drugs.

"Already several labs from both academia and industry have contacted us about collaborating on PME-1 research," said Cravatt. "So our findings here are scientifically interesting, and I think could, one day, be valuable clinically. But it's important to emphasize that we wouldn't have these findings at all, were it not for the NIH Molecular Libraries Program and its compound library. Both on the screening side and the chemistry side, the NIH enabled us academics to bring technologies to the table unlikely to be found in a traditional 'pharma' setting. Our discoveries thus stand as a fine example of the value of public screening for creating novel, in vivo-active pharmacological probes for challenging protein targets."

The paper's other co-authors were Justin T. Mohr and Jacob M. Berlin of the Fu laboratory at MIT; Timothy P. Spicer, Virneliz Fernandez-Vega, Peter Chase, Peter S. Hodder, and Stephan C. Schürer of the Scripps Molecular Screening Center in Jupiter, Florida; and Anna E. Speers, Chu Wang, Daniel K. Nomura and Hugh Rosen of the Scripps Research campus in La Jolla, California.

The activities described in this release are funded through the National Institutes of Health (MH084512, CA132630, and GM57034).

### About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu


ELSE PRESS RELEASES FROM THIS DATE:

Transplanting umbilical cord and menstrual blood-derived stem cells offer hope for disorders

2011-03-08
Tampa, Fla. (Mar. 07, 2011) – Transplanting stem cells derived from umbilical cord blood cells and menstrual blood cells may offer future therapeutic benefit for those suffering from stroke, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), says a team of neuroscience researchers from the University of South Florida's Department of Neurosurgery and Brain Repair and collaborators from three private-sector research groups, Saneron CCEL Therapeutics, Inc., Tampa, FL, Cryo-Cell International, Inc., Oldsmar, FL, and Cryopraxis, Cell Praxis, BioRio, Rio de Janeiro, ...

Research sheds light on fat digestibility in pigs

2011-03-08
Producers and feed companies add fat to swine diets to increase energy, but recent research from the University of Illinois suggests that measurements currently used for fat digestibility need to be updated. "It's critical that we gain a better understanding of the energy value of fat," said Hans H. Stein, U of I professor in the Department of Animal Sciences. "If we don't know the true energy value of fat, we can't determine if it's economical to add to the diet." In a recent experiment, Stein and his team of researchers studied how different types of diets affect ...

New weight loss discovery by Harvard scientists moves us closer to 'the Pill' for obesity

2011-03-08
An important discovery in mice may make a big difference in people's waistlines thanks to a team of Harvard scientists who found that reducing the function of a transmembrane protein, called Klotho, in obese mice with high blood sugar levels produced lean mice with reduced blood sugar levels. This protein also exists in humans, suggesting that selectively targeting Klotho could lead to a new class of drugs to reduce obesity and possibly Type 2 diabetes for people. This finding was recently published online in The FASEB Journal (http://www.fasebj.org). "Our study is a ...

Ultra fast photodetectors out of carbon nanotubes

Ultra fast photodetectors out of carbon nanotubes
2011-03-08
This release is available in German. Carbon nanotubes have a multitude of unusual properties which make them promising candidates for optoelectronic components. However, so far it has proven extremely difficult to analyze or influence their optic and electronic properties. A team of researchers headed by Professor Alexander Holleitner, a physicist at the Technische Universitaet Muenchen and member of the Cluster of Excellence Nanosystems Munich (NIM), has now succeeded in developing a measurement method allowing a time-based resolution of the so-called photocurrent ...

Multiple sclerosis blocked in mouse model

2011-03-08
Scientists have blocked harmful immune cells from entering the brain in mice with a condition similar to multiple sclerosis (MS). According to researchers from Washington University School of Medicine in St. Louis, this is important because MS is believed to be caused by misdirected immune cells that enter the brain and damage myelin, an insulating material on the branches of neurons that conduct nerve impulses. New insights into how the brain regulates immune cell entry made the accomplishment possible. Washington University scientists had borrowed an anti-cancer drug ...

Fossil bird study describes ripple effect of extinction in animal kingdom

2011-03-08
GAINESVILLE, Fla. --- A University of Florida study demonstrates extinction's ripple effect through the animal kingdom, including how the demise of large mammals 20,000 years ago led to the disappearance of one species of cowbird. The study shows the trickle-down effect the loss of large mammals has on other species, and researchers say it is a lesson from the past that should be remembered when making conservation, game and land-use decisions today. "There's nothing worse for a terrestrial ecosystem than the loss of large mammals – and the loss of apex predators like ...

University of Missouri researcher study provides insight into how corn makes hormones

2011-03-08
Columbia, MO -- It's a corn plant only a geneticist could love, but an MU researcher has found a way to help scientists love it. Instead of the characteristic fan-like tassel that waves majestically atop the stalk, this corn plant sends up a cartoonishly skinny stick. Its ears -- if it makes them at all -- resemble small, chubby, lime-green caterpillars, not exactly something you want to dig your teeth into. To top it off, the corn plant stands only about three feet tall, at full maturity, and has few leaves. "A farmer would say this corn plant looks terrible," said ...

Rockefeller Scientists discover new compound that rids cells of Alzheimer protein debris

2011-03-08
If you can't stop the beta-amyloid protein plaques from forming in Alzheimer's disease patients, then maybe you can help the body rid itself of them instead. At least that's what scientists from New York were hoping for when they found a drug candidate to do just that. Their work appears in a research report online in The FASEB Journal (http://www.fasebj.org), and shows that a new compound, called "SMER28" stimulated autophagy in rat and mice cells. Autophagy is a process cells use to "clean out" the debris from their interior, including unwanted materials such as the protein ...

Scientists find key mechanism of childhood respiratory disease

2011-03-08
GALVESTON, Texas — Researchers have identified a critical part of the process by which one of the world's most common and dangerous early childhood infections, respiratory syncytial virus, causes disease. The discovery could lead to badly needed new therapies for RSV, which in 2005 was estimated to have caused at least 3.4 million hospitalizations and 199,000 deaths among children under five worldwide. By analyzing samples taken from infected infants and data from laboratory-mouse experiments, University of Texas Medical Branch at Galveston scientists determined that ...

Student innovation at Rensselaer transmits data and power wirelessly through submarine hulls

Student innovation at Rensselaer transmits data and power wirelessly through submarine hulls
2011-03-08
Troy, N.Y. – Steel walls are no match for Tristan Lawry. The doctoral student at Rensselaer Polytechnic Institute has developed and demonstrated an innovative new system that uses ultrasound to simultaneously transmit large quantities of data and power wirelessly through thick metal walls, like the hulls of ships and submarines. Lawry, a student in the Department of Electrical, Computer, and Systems Engineering at Rensselaer, is one of three finalists for the 2011 $30,000 Lemelson-MIT Rensselaer Student Prize. A public ceremony announcing this year's winner will be held ...

LAST 30 PRESS RELEASES:

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

[Press-News.org] Scripps Research and MIT scientists discover class of potent anti-cancer compounds