(Press-News.org) STANFORD, Calif. — Humans are clearly different from chimpanzees. The question is, why? According to researchers at the Stanford University School of Medicine, it may boil down in part to what we don't have, rather than what we do. The loss of snippets of regulatory DNA, the scientists found, could be the reason why, for example, humans lack the penile spines found in many other mammals, and also why specific regions of our brains are larger than those of our closest relatives.
Understanding these and other differences may help us learn what it means to be human. But it took the recent advent of whole-genome sequencing of several species and an open-minded, combined computational and experimental approach to reveal the particular two-steps-forward, one-step-back evolutionary dance that set us apart from other primates millions of years ago.
"Rather than looking for species-specific differences in specific genes or genomic regions that exist in humans, we asked, 'Are there functional, highly conserved genetic elements in the chimpanzee genome that are completely missing in humans?'" said Gill Bejerano, PhD, assistant professor of developmental biology and of computer science. "We found several hundred locations that, as far as we could see, are absent in our species alone." Until now, many evolutionary geneticists focused on differences among genes, rather than the regulatory regions outside the genes.
Losing small pieces of regulatory DNA, rather than the genes they control, means that the related changes are likely to be subtle: Although the location or the timing of the expression of the gene within the body may change, the gene product itself remains functional. The distinction leads to viable differences among individuals that can eventually lead to the development of new traits and species.
"It's not only unusual, but also particularly interesting, to find these sequences missing in humans," said David Kingsley, PhD, professor of developmental biology. "These are the same type of molecular events that have been shown to produce evolutionary differences among other organisms."
Other organisms like the three-spined stickleback fish, for instance. Kingsley's previous research focused on understanding how similar genetic changes over time have led to body modifications in the small fish that allow it to live in many very different environments.
"In fish, we find that the loss of regulatory DNA has produced key evolutionary differences in body structures," Kingsley said. "The current study not only identifies an intriguing list of deletions in humans, but also links particular deletions with specific anatomical changes that are unique to the human lineage."
Bejerano and Kingsley are co-senior authors of the research, which will be published March 10 in Nature. Three scientists share first authorship of the article: Cory McLean, a graduate student in Bejerano's laboratory; Alex Pollen, a graduate student in Kingsley's laboratory; and Philip Reno, PhD, a former postdoctoral scholar in Kingsley's laboratory now starting his own lab at Pennsylvania State University.
The researchers compared the genomes of several species to identify 510 regions that are highly conserved among chimpanzees and other mammals but are missing in humans. (Only one of the regions contained a coding region of a gene, or the portion that is turned into proteins to do the cell's work.) They then used a software program developed in Bejerano's laboratory called GREAT (for genomic regions of enrichment of annotations tool) to see whether these regions preferentially occurred near certain types of genes. (GREAT is publicly available to researchers around the world at http://great.stanford.edu.)
"We basically asked where evolution favored tweaking gene expression to get human-specific traits," said Bejerano. "We found two main categories of enrichment: genes involved in receptor signaling for steroid hormones like testosterone, and genes involved in neural development in the brain."
"Most, but not all, of these regions are also missing in the Neanderthal genome," said Kingsley, "which indicates the deletion took place more than 500,000 years ago."
The researchers found that one of the missing regions normally drives the expression of the androgen receptor in sensory whiskers and genitalia. Androgen is a sex hormone responsible for growth of sensory hairs, or vibrissae, and surface spines found on the penises of many mammals. The loss of these structures in humans decreases tactile sensitivity and increases the duration of intercourse in humans relative to other species.
Another region was adjacent to a tumor suppressor gene that suppresses neural growth in a particular part of the brain. Loss of expression of this inhibitory gene could thus contribute to an expansion of neural production in humans and a larger brain.
The resulting changes may have paved the way for monogamous pair-bonding and the complex social structure necessary to raise our species' relatively helpless infants, the scientists speculate.
There are still many other human-specific deletions to investigate, say the scientists, who are encouraging their lab members to study the functions of other interesting regions.
"Finding these sorts of human-specific changes is also a good motivator to look at other genomic events," said Bejerano. "Previous work in my lab has shown that many thousands of DNA regions are highly conserved among mammals, and almost never lost during evolution. Much of my lab is devoted to understanding what these regions do. Now we are starting to learn what can happen when they are lost."
###The work was supported by a Stanford Bio-X graduate fellowship, a Ruth L. Kirschstein National Research Service Award, a National Defense Science and Engineering graduate fellowship, a National Science Scholarship of the Agency of Science, Technology and Research, a Stanford graduate fellowship, the National Institutes of Health, the Edward Mallinckrodt, Jr. Foundation and the Howard Hughes Medical Institute.
More information about Stanford's departments of developmental biology and of computer science, in which the research was conducted, is available at devbio.stanford.edu and cs.stanford.edu.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
Differences in mammalian brain structure and genitalia linked to specific DNA regions in new study
2011-03-10
ELSE PRESS RELEASES FROM THIS DATE:
A new look at the adolescent brain: It's not all emotional chaos
2011-03-10
Adolescence is often described as a tumultuous time, where heightened reactivity and impulsivity lead to negative behaviors like substance abuse and unsafe sexual activity. Previous research has pointed to the immature adolescent brain as a major liability, but now, a unique study reveals that some brain changes associated with adolescence may not be driving teens towards risky behavior but may actually reflect a decrease in susceptibility to peer pressure. The findings, published by Cell Press in the March 10 issue of the journal Neuron, provide a more complete perspective ...
A-ha! The neural mechanisms of insight
2011-03-10
Although it is quite common for a brief, unique experience to become part of our long-term memory, the underlying brain mechanisms associated with this type of learning are not well understood. Now, a new brain-imaging study looks at the neural activity associated with a specific type of rapid learning, insight. The research, published by Cell Press in the March 10 issue of the journal Neuron, reveals specific brain activity that occurs during an "A-ha!" moment that may help encode the new information in long-term memory.
"In daily life, information that results from ...
In adolescence, the power to resist blooms in the brain
2011-03-10
Just when children are faced with intensifying peer pressure to misbehave, regions of the brain are actually blossoming in a way that heighten the ability to resist risky behavior, report researchers at three West Coast institutions.
The findings -- detailed in the March 10 issue of the journal Neuron -- may give parents a sigh of relief regarding their kids as they enter adolescence and pay more attention to their friends. However, the research provides scientists with basic insight about the brain's wiring, rather than direct clinical relevance for now.
In the study, ...
Drug use increasingly associated with microbial infections
2011-03-10
Illicit drug users are at increased risk of being exposed to microbial pathogens and are more susceptible to serious infections say physicians writing in the Journal of Medical Microbiology. The review, which aims to improve the microbiological diagnosis of drug use-related infections, assesses the role of drug related practices in the spread of a range of bacterial, viral, fungal and protozoal infections.
The review by collaborators from the Armed Forces Medical College, Pune, India highlights convincing evidence that unsterile injection practices, contaminated needles, ...
'GPS system' for protein synthesis in nerve cells gives clues for understanding brain disorders
2011-03-10
PHILADELPHIA – Scientists at the University of Pennsylvania explain how a class of RNA molecules is able to target the genetic building blocks that guide the functioning of a specific part of the nerve cell. Abnormalities at this site are in involved in epilepsy, neurodegenerative disease, and cognitive disorders. Their results are published this week in the journal Neuron.
A team of researchers, led by James Eberwine, PhD, the Elmer Bobst Professor of Pharmacology in the School of Medicine, and Junhyong Kim, PhD, the Edmund J. and Louise W. Kahn Professor of Biology ...
Missing DNA makes us human
2011-03-10
University Park, Pa. -- Chimpanzees and humans are minimally different genetically, but the small differences are what make us human, according to a team of researchers who identified segments of non-coding DNA missing in humans that exist in chimpanzees and other animals.
"The technology now lets us look at the genomes of humans and other mammals and find sites where humans are unique," said Philip Reno, assistant professor of anthropology, Penn State. "We can now correlate that information with specific human physical characteristics."
DNA is composed of gene segments ...
Researchers identify new form of muscular dystrophy
2011-03-10
A strong international collaboration and a single patient with mild muscle disease and severe cognitive impairment have allowed University of Iowa researchers to identify a new gene mutation that causes muscular dystrophy.
Furthermore, by engineering the human gene mutation into a mouse, the researchers, led by Kevin Campbell, Ph.D., professor and head of molecular physiology and biophysics at the UI Carver College of Medicine and a Howard Hughes Medical Institute investigator, have created a new mouse model that could help screen potential drugs to treat this type of ...
'Singing' mice -- the ongoing debate of nature vs. nurture
2011-03-10
What happened to being "quiet as a mouse"? Researchers have recently shown that, rather than being the silent creatures of popular belief, mice emit ultrasonic calls in a variety of social contexts, and these calls have song-like characteristics. So if mice sing, where do they get their music? Are they born with the songs fully formed in their heads, or do they learn them from their peers? This question is of great interest to scientists as, while many organisms produce genetically regulated vocalizations, only a select few species (such as ourselves) can actually learn ...
New biomarker for Creutzfeldt-Jakob disease found, the human form of mad cow disease
2011-03-10
Neena Singh, MD, PhD and colleagues at Case Western Reserve University School of Medicine have identified the first disease-specific biomarker for sporadic Creutzfeldt-Jakob disease (sCJD), a universally fatal, degenerative brain disease for which there is no cure. sCJD is one of the causes of dementia and typically leads to death within a year of disease onset.
The finding, published in the March 9th issue of PLoS ONE, a scientific journal produced by the Public Library of Science, provides a basis for developing a test to diagnosis sCJD while patients are still alive. ...
Missing DNA helps make us human
2011-03-10
A new study demonstrates that specific traits that distinguish humans from their closest living relatives – chimpanzees, with whom we share 96 percent of our DNA – can be attributed to the loss of chunks of DNA that control when and where certain genes are turned on. The finding mirrors accumulating evidence from other species that changes to regulatory regions of DNA – rather than to the genes themselves – underlie many of the new features that organisms acquire through evolution.
Seeking specific genetic changes that might be responsible for the evolution of uniquely ...