(Press-News.org) New research provides the first evidence that sensory recalibration — the brain's automatic correcting of errors in our sensory or perceptual systems — can occur instantly.
"Until recently, neuroscientists thought of sensory recalibration as a mechanism that is primarily used for coping with long-term changes, such as growth during development, brain injury or stroke," said Ladan Shams, a UCLA assistant professor of psychology and an expert on perception and cognitive neuroscience. "It appeared that extensive time, and thus many repetitions of error, were needed for mechanisms of recalibration to kick in. However, our findings indicate we don't need weeks, days, or even minutes or seconds to adapt. To some degree, we adapt instantaneously.
"If recalibration can occur in milliseconds, as we now think, then we can adapt even to transient changes in the environment and in our bodies."
In Shams' study, reported in the March 23 issue of the Journal of Neuroscience, 146 individuals, primarily UCLA undergraduates, performed what is known as a fundamental perceptual task. They looked at the center of a large screen that had eight speakers hidden behind it. Sometimes they heard only a brief burst of sound somewhat like radio static; sometimes they saw only a quick flash of light; and sometimes they both heard a sound and saw a light. They were asked to determine where the sound was and where the light was.
The participants, the researchers found, were much more accurate in determining where the light was than where the sound was.
The 'ventriloquist illusion'
"The perceived location of sound gets shifted toward the location of the visual stimulus," Shams said. "That is known as the 'ventriloquist illusion.' If I repeatedly, for thousands of times, present a flash of light on the left side and a sound on the right side, afterwards, even when the sound is presented alone, the perceived location of sound will be shifted to the left, toward where the flash was. The visual stimulus affects the perception of the sound, not only while it is present, but also as an after-effect. This phenomenon has been known, but neuroscientists thought it required a large number of repeated exposures.
"We found this shift can happen not after thousands of trials, but after just a single trial. A small fraction of a second is enough to cause this perceptual shift. These findings provide the first evidence that sensory recalibration can occur rapidly, after only milliseconds. This indicates that recalibration of auditory space does not require the accumulation of substantial evidence of error to become engaged, and instead it is operational continuously."
In the study, the subjects were presented with a variety of different combinations. For example, in one trial the flash could be 10 degrees to the right of the sound; in the next, it could be 15 degrees to the left of the sound; then there could be sound and no flash; then flash and no sound; then the sound and flash could be in the same location.
"For every trial that contained sound alone (with no flash), we studied how the subjects located the sound in relation to what they experienced in the previous trial, where there was a flash. We found a very strong correlation; if the flash was to the right of the sound in the previous trial, then on the trial with the sound alone, the sound was perceived a little to the right; if the flash was to the left of the sound on the previous trial, then on the trial with sound alone, the sound was perceived a little to the left. The larger the discrepancy, the larger the shift."
While the subjects seemed to be making perceptual errors rather than correcting them, Shams stressed that this was an unnatural environment in which researchers artificially created a discrepancy between auditory and visual stimuli to show how quickly recalibration could occur.
In the real world, she said, recalibration would actually result in a reduction in errors in a person experiencing an auditory-visual discrepency due to a flaw in one of their senses.
Implications for rehabilitation, robotics
This research could have implications for rehabilitation from brain injuries and could help in the development of prosthesis, when, for example, people get hearing devices and can use vision to guide their learning of how to localize sound. It also has implications for the design of robotic recalibration, which could be useful for aircraft as well as robots.
Our senses are similar to those of a robot. NASA's Mars Rovers, for instance, are sampling the planet's surface using cameras, sensors, microphones and other equipment, which, like our senses, can get damaged. If a camera becomes misaligned across the rocky terrain, its function will be diminished.
"Sensory recalibration is a critical function for both biological and artificial systems," Shams said. "As with artificial sensors, biological sensory systems can become faulty and need correction every now and then."
Ailments such as a blocked ear canal or a problem with our sense of smell or vision can lead to distorted perceptions — or shifts — in our spatial map. If there is a systematic error in our auditory system, it needs to be corrected. When biological sensory systems become faulty, the brain typically provides the correction automatically.
"Fortunately, human sensory systems already possess the uncanny ability to recalibrate their own localization maps through the interactions between visual and auditory systems," Shams said. "Our new findings show that the multisensory recalibration is continuously functioning after only milliseconds of sensory discrepancies, allowing for rapid adaptation to changes in sensory signals. This rapid adaptation allows not only adaptation to long-term changes such as those induced by injury and disease, but also adaptation to transient changes, such as changes in the echo properties of our surrounding space as we walk from one room to another room or from indoors to outdoors, or when one ear is temporarily blocked by hair or headwear."
The research by Shams and David Wozny — who earned his Ph.D. from UCLA in August in Shams' laboratory, and is currently a postdoctoral fellow at Oregon Health and Science University — is shedding light for the first time on the dynamics of sensory recalibration. They have learned, for example, that repeated exposures will increase the shift, which accumulates quickly before slowing down.
"Vision is teaching hearing," Shams said. "If vision tells me one time that sound is not here (indicating her left), but here (her right), then I shift my auditory map a little; if it happens twice in a row, I shift even more. If it happens three times in a row, I shift even more."
An optimal learning strategy?
Using the same set of data, Shams and Wozny published in the Aug. 5, 2010, issue of the journal PLoS Computational Biology a computational model that allows them to analyze why subjects perceive the sounds and sights in a particular way and what computations occur in their brains when they hear the sounds and see flashes. (Ulrik Beierholm, a former UCLA graduate student of Shams, who is currently a postdoctoral fellow at University College London's Gatsby Computational Neuroscience Unit, was a co-author.)
"By analyzing the data using three models, we can determine which model best explains the data and can characterize the strategy the subjects' brains use to make perceptual decisions, Shams said.
Determining the locations of sights and sounds is a basic brain function, and scientists assume that such functions are performed optimally because they have been refined over millions of years of evolution, Shams said. Because this is a basic task, neuroscientists would expect almost all brains to perform it in the same way.
"Surprisingly, we found the perceptual task is not performed uniformly across subjects. Different people use different strategies to perform this task," Shams said. "Secondly, the vast majority of people, at least 75 percent, use a strategy that is considered seriously sub-optimal."
What is this sub-optimal strategy? By way of analogy, Shams says, if there is a 70 percent chance of rain, you would be wise to take an umbrella with you.
"What we found is that instead of people taking the umbrella every time there is, say, a 70 percent chance of rain, so to speak, they match the probability: They take the umbrella only 70 percent of the time," she said.
When subjects were presented with a noise and a flash and were asked where they perceived the noise and flash to be coming from, their brains had to figure out whether the sound and flash were coming from the same location or from different locations.
"If they infer there is a 70 percent chance that the sound and flash are coming from the same object, for the majority of observers, 70 percent of the time they go with that estimate and 30 percent of the time they go with the unlikely estimate," Shams said. "Under conventional measures of optimality, which implicitly assume static environments, this strategy is highly suboptimal.
"However, the conventional way of thinking about these problems may not be correct after all. In a dynamic world, things may change constantly. The optimal strategy is to learn, and to learn you need to take some risks. Even if that's not the best choice at that time, in the long run, it may well be the best choice, because by exploring different possibilities, you may learn more. So paradoxically, a strategy that appears sub-optimal may actually be near-optimal. Perhaps the way we think about brain function should be revised."
###
The research was funded by a National Institutes of Health neuroimaging training grant, by UCLA's Graduate Division and by UCLA's Academic Senate.
UCLA is California's largest university, with an enrollment of more than 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 328 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.
For more news, visit the UCLA Newsroom and follow us on Twitter.
Study of how brain corrects perceptual errors has implications for brain injuries, robotics
2011-03-24
ELSE PRESS RELEASES FROM THIS DATE:
Who owns our blood?
2011-03-24
The absence of specific laws which define the ownership, storage and use of blood drops taken from every Australian baby since 1971 could threaten public trust in newborn screening (NBS) programs in Australia, a University of Melbourne academic has warned.
For the past 40 years, the heel of nearly every baby born in Australia has been pricked to collect several drops of blood. These drops – which are then tested for a variety of genetic conditions, such as cystic fibrosis - are effective health checks. But according to Dr Diana Bowman, from the Melbourne School of Population ...
Pulling an all-nighter can bring on euphoria and risky behavior
2011-03-24
A sleepless night can make us cranky and moody. But a lesser known side effect of sleep deprivation is short-term euphoria, which can potentially lead to poor judgment and addictive behavior, according to new research from the University of California, Berkeley.
The findings, published today, March 22, in the Journal of Neuroscience, underscore the need for people in high-stakes professions and circumstances not to shortchange themselves on sleep, Walker said.
"We need to ensure that people making high-stakes decisions, from medical professionals to airline pilots to ...
Physical activity decreases salt's effect on blood pressure
2011-03-24
The more physically active you are, the less your blood pressure rises in response to a high-salt diet, researchers reported at the American Heart Association's Nutrition, Physical Activity and Metabolism/Cardiovascular Disease Epidemiology and Prevention 2011 Scientific Sessions.
"Patients should be advised to increase their physical activity and eat less sodium," said Casey M. Rebholz, M.P.H., lead author of the study and a medical student at the Tulane School of Medicine and doctoral student at the Tulane University School of Public Health & Tropical Medicine in New ...
Obese and overweight women, children underestimate true weight
2011-03-24
Overweight and obese mothers and their children think they weigh less than their actual weight, according to research reported at the American Heart Association's Nutrition, Physical Activity and Metabolism/Cardiovascular Disease Epidemiology and Prevention 2011 Scientific Sessions.
In the study of women and children in an urban, predominantly Hispanic population, most normal weight women and children in the study correctly estimated their body weight, but most obese women and children underestimated theirs.
"Obesity is a well-known risk factor for the development ...
Researchers find similarities in brain activity for both habits and goals
2011-03-24
A team of researchers has found that pursuing carefully planned goals and engaging in more automatic habits shows overlapping neurological mechanisms. Because the findings, which appear in the latest issue of the journal Neuron, show a neurological linkage between goal-directed and habitual, and perhaps damaging, behaviors, they may offer a pathway for beginning to address addiction and similar maladies.
The study was conducted by researchers at New York University's Center for Neural Science and Department of Psychology, Princeton University's Department of Psychology ...
Study finds no association between mercury exposure and risk of cardiovascular disease
2011-03-24
Boston, MA -- Although research has shown that eating fish, which is rich in beneficial omega-3 fatty acids, is associated with lower risk of cardiovascular diseases, mixed evidence from prior studies has suggested that mercury exposure from fish consumption may be linked to higher risk of cardiovascular diseases. In a new, large-scale study from Harvard School of Public Health (HSPH) and Brigham and Women's Hospital (BWH), researchers found no evidence that higher levels of mercury exposure were associated with higher risk of coronary heart disease, stroke, or total cardiovascular ...
Cruise ship norovirus outbreak highlights how infections spread
2011-03-24
[EMBARGOED FOR MARCH 23, 2011] Norovirus is the leading cause of acute gastroenteritis in the United States and is estimated to cause nearly 21 million cases annually. It is highly transmissible through person-to-person contact and contaminated food, water, and environmental surfaces. The results of an investigation of a 2009 outbreak on a cruise ship shed light on how the infections can spread and the steps both passengers and crew can take to prevent them. The findings are published in a new study in Clinical Infectious Diseases and available online (http://www.oxfordjournals.org/our_journals/cid/cir144.pdf). ...
Trigger found for autoimmune heart attacks
2011-03-24
BOSTON – March 23, 2011 – People with type 1 diabetes, whose insulin-producing cells have been destroyed by the body's own immune system, are particularly vulnerable to a form of inflammatory heart disease (myocarditis) caused by a different autoimmune reaction. Scientists at Joslin Diabetes Center have revealed the exact target of this other onslaught, taking a large step toward potential diagnostic and therapeutic tools for the heart condition.
Researchers in the lab of Myra Lipes, M.D., have shown in both mice and people that myocarditis can be triggered by a protein ...
Investigations show that telomerase inhibitor PinX1 is a key tumor suppressor
2011-03-24
BOSTON – It's been nearly 10 years since Beth Israel Deaconess Medical Center (BIDMC) scientists Kun Ping Lu, MD, PhD and Xiao Zhen Zhou, MD, discovered PinX1, the first potent endogenous protein shown to inhibit telomerase in mammals.
Now the scientific team has discovered a vitally important new function for this telomerase inhibitor.
The investigators report in today's on-line edition of the Journal of Clinical Investigation (JCI) that low levels of PinX1 contribute to cancer development, providing the first genetic evidence linking telomerase activation to chromosome ...
Researchers sequence multiple myeloma genome in landmark Nature study
2011-03-24
HACKENSACK, N.J. (March 23, 2011) — Using new genome sequencing technologies, researchers from the John Theurer Cancer Center at Hackensack University Medical Center joined colleagues from 20 major North American research institutions to publish the first complete genomic portrait of multiple myeloma, a highly aggressive blood cancer. Findings from the study point to new directions for potential myeloma therapies, and begin to unlock the mysteries of what causes this devastating malignancy. The paper will be published in the March 24, 2011 issue of Nature.
Multiple ...