(Press-News.org) HOUSTON -- (May 3, 2011) -- A Rice University-led team of physicists this week offered up one of the first theoretical explanations of how two dissimilar types of high-temperature superconductors behave in similar ways.
The research appears online this week in the journal Physical Review Letters. It describes how the magnetic properties of electrons in two dissimilar families of iron-based materials called "pnictides" (pronounced: NICK-tides) could give rise to superconductivity. One of the parent families of pnictides is a metal and was discovered in 2008; the other is an insulator and was discovered in late 2010. Experiments have shown that each material, if prepared in a particular way, can become a superconductor at roughly the same temperature. This has left theoretical physicists scrambling to determine what might account for the similar behavior between such different compounds.
Rice physicist Qimiao Si, the lead researcher on the new paper, said the explanation is tied to subtle differences in the way iron atoms are arranged in each material. The pnictides are laminates that contain layers of iron separated by layers of other compounds. In the newest family of insulating materials, Chinese scientists found a way to selectively remove iron atoms and leave an orderly pattern of "vacancies" in the iron layers.
Si, who learned about the discovery of the new insulating compounds during a visit to China in late December, suspected that the explanation for the similar behavior between the new and old compounds could lie in the collective way that electrons behave in each as they are cooled to the point of superconductivity. His prior work had shown that the arrangement of the iron atoms in the older materials could give rise to collective behavior of the magnetic moments, or "spins," of electrons. These collective behaviors, or "quasi-localizations," have been linked to high-temperature superconductivity in both pnictides and other high-temperature superconductors.
"The reason we got there first is we were in a position to really quickly incorporate the effect of vacancies in our model," Si said. "Intuitively, on my flight back (from China last Christmas), I was thinking through the calculations we should begin doing."
Si conducted the calculations and analyses with co-authors Rong Yu, postdoctoral research associate at Rice, and Jian-Xin Zhu, staff scientist at Los Alamos National Laboratory.
"We found that ordered vacancies enhance the tendency of the electrons to lock themselves some distance away from their neighbors in a pattern that physicists call 'Mott localization,' which gives rise to an insulating state," Yu said. "This is an entirely new route toward Mott localization."
By showing that merely creating ordered vacancies can prevent the material from being electrical conductors like their relatives, the researchers concluded that even the metallic parents of the iron pnictides are close to Mott localization.
"What we are learning by comparing the new materials with the older ones is that these quasi-localized spins and the interactions among them are crucial for superconductivity, and that's a lesson that can be potentially applied to tell experimentalists what is good for raising the transition temperature in new families of compounds," Zhu said.
Superconductivity occurs when electrons pair up and flow freely through a material without any loss of energy due to resistance. This most often occurs at extremely low temperatures, but compounds like the pnictides and others become superconductors at higher temperatures -- close to or above the temperature of liquid nitrogen -- which creates the possibility that they could be used on an industrial scale. One impediment to their broader use has been the struggle to precisely explain what causes them to become superconductors in the first place. The race to find that has been called the biggest mystery in modern physics.
"The new superconductors are arguably the most important iron-based materials that have been discovered since the initial discovery of iron pnictide high-temperature superconductors in 2008," Si said. "Our theoretical results provide a natural link between the new and old iron-based superconductors, thereby suggesting a universal origin of the superconductivity in these materials."
###
The research was funded by the National Science Foundation, the Robert A. Welch Foundation and the Department of Energy. It was facilitated by the International Collaborative Center on Quantum Matter, a collaborative entity Rice formed with partner institutions from China, Germany and United Kingdom.
END
CAMBRIDGE, Mass. -- MIT chemical engineers have designed a new type of drug-delivery nanoparticle that exploits a trait shared by almost all tumors: They are more acidic than healthy tissues.
Such particles could target nearly any type of tumor, and can be designed to carry virtually any type of drug, says Paula Hammond, a member of the David H. Koch Institute for Integrative Cancer Research at MIT and senior author of a paper describing the particles in the journal ACS Nano.
Like most other drug-delivering nanoparticles, the new MIT particles are cloaked in a polymer ...
Ecstasy – the illegal "rave" drug that produces feelings of euphoria and emotional warmth – has been in the news recently as a potential therapeutic. Clinical trials are testing Ecstasy in the treatment of post-traumatic stress disorder.
But headlines like one in Time magazine's health section in February – "Ecstasy as therapy: have some of its negative effects been overblown?" – concern Ronald Cowan, M.D., Ph.D., associate professor of Psychiatry.
His team reports in the May issue of Neuropsychopharmacology that recreational Ecstasy use is associated with a chronic ...
Boston, MA – A common component in webcams may help drug makers and prescribers address a common side-effect of drugs called cardiotoxicity, an unhealthy change in the way the heart beats. Researchers at Brigham and Women's Hospital (BWH) have used the basic webcam technology to create a tool to look at the effects of medications in real time on heart cells, called cardiomyocytes. These findings were published in the journal, Lab on a Chip on April 11, 2011.
Researchers developed a cost-effective, portable cell-based biosensor for real time cardiotoxicity detection using ...
An ancient, bipedal hominid needs a new nickname. Paranthropus boisei, a 2.3 million to 1.2 million-year-old primate, whom researchers say is an early human cousin, probably didn't crack nuts at all as his common handle suggests.
"Nutcracker Man" most likely ate grass and possibly sedges, said geochemist Thure Cerling, lead author of a study published in the May 2 online edition of the journal Proceedings of the National Academy of Sciences.
Cerling and colleagues determined P. boisei's diet by analyzing carbon isotope ratios in the tooth enamel of 24 teeth from 22 ...
WALNUT CREEK, Calif.—Fungi play significant ecological and economic roles. They can break down organic matter, cause devastating agricultural blights, enter into symbiotic relationships to protect and nourish plants, or offer a tasty repast. For industrial applications, fungi provide a source of enzymes to catalyze such processes as generating biofuels from plant biomass. One large fungal group with such enzymes are the rust plant pathogens which cannot survive on their own so they use crops as hosts, leading to reduced yields and potentially hindering efforts to grow biomass ...
Durham, NC – Most of us wouldn't consider slow-moving snails to be high-metabolism creatures. But at one point in the distant past, snail metabolism sped up, says a new study of marine snails in the journal Paleobiology.
"Many of the marine snails we recognize today — such as abalone, conchs, periwinkles and whelks — require more than twice as much energy to survive as their ancestors did," said co-author Seth Finnegan of the California Institute of Technology.
The findings come from a new analysis of snail fossils formed one to two hundred million years ago, during ...
LOS ANGELES, May 3, 2011 – When it comes to healthy snacking and weight management, a new study bolsters the long-held view that not all calories are created equal. According to nutrition researchers at UCLA, choosing to snack on pistachios rather than pretzels as part of a healthy diet not only supports your body mass index (BMI) goals, but can support heart health too.
The study, recently published in the Journal of the American College of Nutrition is especially significant in today's diet as snack foods account for more than a quarter of the total caloric intake ...
Rutgers researchers have developed an innovative new treatment that could help minimize nerve damage in spinal cord injuries, promote tissue healing and minimize pain.
After a spinal cord injury there is an increased production of a protein (RhoA) that blocks regeneration of nerve cells that carry signals along the spinal cord and prevents the injured tissue from healing.
Scientists at the W.M. Keck Center for Collaborative Neuroscience and Quark Pharmaceuticals Inc. have developed a chemically synthesized siRNA molecule that decreases the production of the RhoA protein ...
New Rochelle, NY, May 3, 2011—Researchers at last month's AACR conference in Orlando demonstrated that they are intensifying their efforts to identify and validate various types of biomarkers that are detectable in readily accessible bodily fluids such as blood and urine, reports Genetic Engineering & Biotechnology News (GEN). The goal is to detect biosignatures that are more specific and sensitive than existing diagnostic modalities, according to the May 1 issue of GEN (http://www.genengnews.com/gen-articles/cancer-detection-improved-with-noninvasive-testing/3639/).
"The ...
Texas Bill Would Raise Speed Limit on Some Texas Highways to 85 MPH
A bill recently passed in the Texas House of Representatives would raise the speed limit on some Texas highways from 80 to 85 mph -- a move that highway safety advocates are already cautioning against. The Texas Senate is currently considering a similar measure.
The Lone Star State already has over 500 miles of highways with speed limits set at 80 mph -- the highest in the nation, along with certain Utah highways. Critics say that the move would be tantamount to a license for motorists and truckers ...