(Press-News.org) COLUMBUS, Ohio – A Detroit entrepreneur surprised university engineers here recently, when he invented a heat-treatment that makes steel 7 percent stronger than any steel on record – in less than 10 seconds.
In fact, the steel, now trademarked as Flash Bainite, has tested stronger and more shock-absorbing than the most common titanium alloys used by industry.
Now the entrepreneur is working with researchers at Ohio State University to better understand the science behind the new treatment, called flash processing.
What they've discovered may hold the key to making cars and military vehicles lighter, stronger, and more fuel-efficient.
In the current issue of the journal Materials Science and Technology, the inventor and his Ohio State partners describe how rapidly heating and cooling steel sheets changes the microstructure inside the alloy to make it stronger and less brittle.
The basic process of heat-treating steel has changed little in the modern age, and engineer Suresh Babu is one of few researchers worldwide who still study how to tune the properties of steel in detail. He's an associate professor of materials science and engineering at Ohio State, and Director of the National Science Foundation (NSF) Center for Integrative Materials Joining for Energy Applications, headquartered at the university.
"Steel is what we would call a 'mature technology.' We'd like to think we know most everything about it," he said. "If someone invented a way to strengthen the strongest steels even a few percent, that would be a big deal. But 7 percent? That's huge."
Yet, when inventor Gary Cola initially approached him, Babu didn't know what to think.
"The process that Gary described – it shouldn't have worked," he said. "I didn't believe him. So he took my students and me to Detroit."
Cola showed them his proprietary lab setup at SFP Works, LLC., where rollers carried steel sheets through flames as hot as 1100 degrees Celsius and then into a cooling liquid bath.
Though the typical temperature and length of time for hardening varies by industry, most steels are heat-treated at around 900 degrees Celsius for a few hours. Others are heated at similar temperatures for days.
Cola's entire process took less than 10 seconds.
He claimed that the resulting steel was 7 percent stronger than martensitic advanced high-strength steel. [Martensitic steel is so named because the internal microstructure is entirely composed of a crystal form called martensite.] Cola further claimed that his steel could be drawn – that is, thinned and lengthened – 30 percent more than martensitic steels without losing its enhanced strength.
If that were true, then Cola's steel could enable carmakers to build frames that are up to 30 percent thinner and lighter without compromising safety. Or, it could reinforce an armored vehicle without weighing it down.
"We asked for a few samples to test, and it turned out that everything he said was true," said Ohio State graduate student Tapasvi Lolla. "Then it was up to us to understand what was happening."
Cola is a self-taught metallurgist, and he wanted help from Babu and his team to reveal the physics behind the process – to understand it in detail so that he could find ways to adapt it and even improve it.
He partnered with Ohio State to provide research support for Brian Hanhold, who was an undergraduate student at the time, and Lolla, who subsequently earned his master's degree working out the answer.
Using an electron microscope, they discovered that Cola's process did indeed form martensite microstructure inside the steel. But they also saw another form called bainite microstructure, scattered with carbon-rich compounds called carbides.
In traditional, slow heat treatments, steel's initial microstructure always dissolves into a homogeneous phase called austenite at peak temperature, Babu explained. But as the steel cools rapidly from this high temperature, all of the austenite normally transforms into martensite.
"We think that, because this new process is so fast with rapid heating and cooling, the carbides don't get a chance to dissolve completely within austenite at high temperature, so they remain in the steel and make this unique microstructure containing bainite, martensite and carbides," Babu said.
Lolla pointed out that this unique microstructure boosts ductility -- meaning that the steel can crumple a great deal before breaking – making it a potential impact-absorber for automotive applications.
Babu, Lolla, Ohio State research scientist Boian Alexandrov, and Cola co-authored the paper with Badri Narayanan, a doctoral student in materials science and engineering.
Now Hanhold is working to carry over his lessons into welding engineering, where he hopes to solve the problem of heat-induced weakening during welding. High-strength steel often weakens just outside the weld joint, where the alloy has been heated and cooled. Hanhold suspects that bringing the speed of Cola's method to welding might minimize the damage to adjacent areas and reduce the weakening.
If he succeeds, his discovery will benefit industrial partners of the NSF Center for Integrative Materials Joining Science for Energy Applications, which formed earlier this year. Ohio State's academic partners on the center include Lehigh University, the University of Wisconsin-Madison, and the Colorado School of Mines.
###
Contact: Suresh Babu, (614) 247-0001; Babu.13@osu.edu
[From June 14-30, 2011, Babu is best reached by email, or through Pam Frost Gorder.]
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
END
WEST LAFAYETTE, Ind. - Researchers have developed a new type of imaging technology to diagnose cardiovascular disease and other disorders by measuring ultrasound signals from molecules exposed to a fast-pulsing laser.
The new method could be used to take precise three-dimensional images of plaques lining arteries, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.
Other imaging methods that provide molecular information are unable to penetrate tissue deep enough to reveal the three-dimensional structure of the plaques, ...
Recently EiDealCasino.com has made some improvements to give their web site a fresh new look, which makes easier and more fun to surf.
EiDealCasino.com is a casino guide that assists Netherlands casino players to find top sites offering quality games that accept payments using the method iDeal - ideal casino guide.
Eidealcasino.com aims to make locating top online casinos, effortless. Their goal is to provide the best up-to-date information for Netherlands with various internet casinos. The website has gathered extensive information on the most reputable and popular ...
The low pressure system that has been bringing rainfall to the northwestern Philippines has strengthened into the fifth tropical depression of the Northwest Pacific Ocean's hurricane season.
Tropical Depression 05W (TD05W) also known as Dodong in the Philippines was caught by infrared NASA satellite imagery on June 8 at 1741 UTC (1:41 p.m. EDT). The infrared data showed some powerful thunderstorms with very cold cloud top temperatures near the threshold of AIRS data of -63 Fahrenheit and -52 Celsius. That indicates the coldest, strongest thunderstorms within the tropical ...
An innovative new eGreetings website, www.iAttachments.com, officially opens for business today. For a $20 annual fee subscribers can send an unlimited number of greetings over the Internet. The distinctiveness of the service is 1) a short film with a song or a lyric video that tells a story appropriate for the greeting occasion, and 2) the core greeting is customized by the sender with an animated "envelope" preceding the film and an animated digital closing personalized with a message to the recipient follows
the film. Subscribers may also use the site's licensed ...
ST. PAUL, MN—Five years after the launch of a global effort to protect the world's most important food crop from variants of Ug99, a new and deadly form of wheat rust, scientists say they are close to producing super varieties of wheat that will resist the potent pathogen, while boosting yields by as much as 15 percent.
According to research to be presented at a global wheat rust symposium in Minneapolis starting June 13, scientists report that variants of the Ug99 strain of stem rust are becoming increasingly virulent and are being carried by wind beyond the handful of ...
What is Amazing Forest?
Yes, the Amazon rainforest is being cut down as you read this. 17% is already gone. The world's lungs - as it's referred to - is decreasing in size. Yes, everyone knows this. But what can we really do about it? The Amazing Forest is a chance to do something right from where you are, sitting in your chair, a few clicks and US$60 away.
Amazing Forest is the venue where people from all over the world are combining their efforts into one single strain to restore the Amazon rainforest to its original state.
We sell trees. Not trees to be delivered ...
Strong thunderstorms are the life's blood of tropical cyclones, and infrared and radar satellite data from NASA today confirms that the eastern Pacific Ocean's first hurricane has plenty of them and they're over 9 miles high. Adrian exploded in growth overnight from a tropical storm on June 8 to a major hurricane today.
NASA's Aqua satellite flew over Hurricane Adrian this morning at 8:29 UTC (1:59 a.m. EDT), and the Atmospheric Infrared Sounder instrument took an infrared snapshot of the storm's many strong thunderstorms and warm ocean water below.
The infrared data ...
New research shows how the protein missing in fragile X syndrome – the most common inherited form of intellectual disability – acts as a molecular toggle switch in brain cells.
The fragile X protein, called FMRP, hooks up with a group of molecules called microRNAs to switch the production of other proteins on and off in response to chemical signals, scientists at Emory University School of Medicine have discovered.
The results appear in the June 10 issue of Molecular Cell.
"For learning and memory to take place, neurons need to be able to make new proteins on demand, ...
GOES-13 satellite imagery on June 9 shows that the pesky low pressure area in the north Caribbean Sea is stretching out and bringing soaking rains to Cuba, Hispaniola, Jamaica and Puerto Rico.
The Geostationary Operational Environmental Satellite called GOES-13 captured an image of this low on June 9 at 1740 UTC (1:40 p.m. EDT) System 94L, and the cloud cover appears centered over eastern Cuba and Jamaica while the outer portion of the low stretches over Hispaniola, Puerto Rico and now south Florida. The elongated low has a minimum central pressure of 1001 millibars and ...
In April 2007, teacher Irka Elsevier and then-graduate student Biance Moebius-Clune began their second inquiry unit designed to enable high school students to better understand soil science concepts through their own research and experiments. Moebius-Clune was an NSF fellow in the Cornell Science Inquiry Partnerships (CSIP) program, which allowed the pair to develop inquiry curriculum to guide students through the process of doing research themselves.
Soil is fundamental to life and relevant to some of today's most pressing global issues, such as climate change and demand ...