(Press-News.org) Boston, MA—Researchers have discovered a new mechanism for the origin of Barrett's esophagus, an intestine-like growth in the esophagus that is triggered by chronic acid reflux and often progresses to esophageal cancer. Studying mice, the researchers found that Barrett's esophagus arises not from mutant cells in the esophagus but rather a small group of previously overlooked cells present in all adults that can rapidly expand to cancer precursors when the normal esophagus is damaged by acid.
This research will be published online in the June 24th issue of Cell.
Decades of cancer research tells us that most of the common cancers begin with genetic changes that occur over a period of 15 to 20 years, in some cases leading to aggressive cancers. However, for a subset of cancers that appear to be linked to chronic inflammation, this model might not hold.
Barrett's esophagus, which was first described by the Australian surgeon Norman Barrett in 1950, affects two to four million Americans. In this condition, tissue forms in the esophagus that resembles the intestinal tissue normally located much farther down the digestive tract. As a result, a person's chances of developing a deadly esophageal adenocarcinoma increase by 50- to 150-fold. Late stage treatment is largely palliative, so it is important to understand how acid reflux triggers it in the first place.
Research from the laboratory of Frank McKeon, Harvard Medical School professor of cell biology, together with Wa Xian, a postdoctoral researcher at Brigham and Women's Hospital and the Institute of Medical Biology, Singapore, along with an international consortium including Christopher Crum, director of Women's and Perinatal Pathology at Brigham and Women's Hospital, has shown that Barrett's esophagus originates from a minor population of non-esophageal cells left over from early development.
For the past decade, McKeon and his laboratory have been using mouse models to investigate the role of p63, a gene involved in the self-renewal of epithelial stem cells including those of the esophagus. McKeon joined forces two years ago with Wa Xian, an expert in signal transduction in cancer cells, to tackle the vexing problem of the origin of Barrett's esophagus.
At that time, the dominant hypothesis for Barrett's was that acid reflux triggers the esophageal stem cells to make intestine cells rather than normal esophageal tissue. However, McKeon and Xian felt the support for this concept was weak. Taking a different track, they studied a mouse mutant lacking the p63 gene and mimicked the symptoms of acid reflux. As a result, the entire esophagus was covered with a Barrett's-like tissue that proved to be a near exact match with human Barrett's at the gene expression level.
The researchers were particularly surprised by the sheer speed with which this Barrett's esophagus appeared in the mice.
"From the speed alone we knew we were dealing with something different here," said Xia Wang, postdoctoral fellow at Harvard Medical School and co-first author of this work.
Yusuke Yamamoto, a postdoctoral fellow at the Genome Institute of Singapore and also co-first author, added that, "we just had to track the origins of the Barrett's cells back through embryogenesis using our markers from extensive bioinformatics."
In essence, the investigators tracked the precancerous growth to a discrete group of leftover embryonic cells wedged between the junction of the esophagus and the stomach--precisely where endoscopists have argued Barrett's esophagus begins. As predicted by the mouse studies, the researchers identified a group of embryonic cells exactly at the junction between the esophagus and the stomach in all normal humans.
"Barrett's arises from this discrete group of pre-existing, residual embryonic cells present in all adults that seemingly lie-in-wait for a chance to take over when the esophagus is damaged," said McKeon. Added Xian, "We know these embryonic cells have different gene expression patterns from all normal tissues and this makes them inviting targets for therapies to destroy Barrett's before it progresses to cancer."
The therapeutic opportunities of this work are potentially immense.
"We are directing monoclonal antibodies to cell surface markers that can identify these precursor cells, so we may have a new opportunity to intervene therapeutically and prevent Barrett's esophagus in at-risk patients," said Wa Xian.
"Additionally," noted McKeon, "we are cloning the stem cells for both these precursors and for Barrett's esophagus itself, and these should represent critical targets for both monoclonal antibodies and small molecule inhibitors."
Finally, there is reason to believe that this unusual mechanism might apply to a subset of other lethal cancers with unsure origins.
Crum noted that "some very aggressive cancers arise at junctions of two tissues and these deserve closer scrutiny to get at their origins if we are to surmount these diseases."
INFORMATION:
This work was supported by the National Institutes of Health.
END
Patients with chronic obstructive pulmonary disease (COPD) who use inhaled corticosteroids to improve breathing for more than six months have a 27 percent increased risk of bone fractures, new Johns Hopkins-led research suggests.
Because the research subjects were mostly men age 60 and older, the findings raise perhaps more troubling questions about the medication's effects on women with COPD, a group already at a significantly higher risk than men for fractures.
"There are millions of COPD patients who use long-term inhaled corticosteroids in the United States and ...
Suburban Hobby Farmer asked us what was the most important lesson children have learned in a garden in my classes. My answer comes from our walks through the forest, an empty lot, a patch of earth on a farm, a small tract of woodland while wearing a pair of Daddy's socks. At the end of these walks the children plant the socks into a flat full of potting soil and a magic journey full of promise and faith begins. From here on out every child who plants their daddy's socks after walking through a forest with the socks over their tennis shoes is intimately connected to any ...
A team led by Johns Hopkins researchers has found that a hereditary colon cancer syndrome, familial adenomatous polyposis (FAP), is associated with abnormally dense blood vessel growth in the skin lining the mouth.
The finding, reported in the June issue of Familial Cancer, could lead to a quick screening test for FAP, which is normally diagnosed with expensive DNA tests and colonoscopies, and sometimes goes unnoticed until cancer develops.
"This higher blood vessel density in the mouth may reflect an abnormal state of cells lining the digestive tract – including the ...
Johns Hopkins researchers have found a likely explanation for the slow growth of the most common childhood brain tumor, pilocytic astrocytoma. Using tests on a new cell-based model of the tumor, they concluded that the initial process of tumor formation switches on a growth-braking tumor-suppressor gene, in a process similar to that seen in skin moles.
The findings, published in the June 1 issue of Clinical Cancer Research, could lead to better ways of evaluating and treating pilocytic astrocytomas.
"These tumors are slow-growing to start with, and sometimes stop growing, ...
SUWON, KOREA—Formaldehyde is a major contaminant of indoor air, originating from particle board, carpet, window coverings, paper products, tobacco smoke, and other sources. Indoor volatile organic compounds (VOCs) such as formaldehyde can contribute to allergies, asthma, headaches, and a condition known as ''sick building syndrome". The concern is widespread; a 2002 report from the World Health Organization estimated that undesirable indoor volatiles represent a serious health problem that is responsible for more than 1.6 million deaths per year and 2.7% of the global burden ...
The following highlights summarize research papers that have been recently published in Geophysical Research Letters (GRL); Geochemistry, Geophysics, Geosystems (G-Cubed); and Paleoceanography (PA).
In this release:
Estimating climate effects of contrails
Did Aboriginal forest burning affect Australian summer monsoon?
Determining the trigger of East Asian dust storms
El Niño–Southern Oscillation variability persisted in warmer world
Constraining the trigger for ancient warming episode
Next generation atmospheric model improves hurricane forecasting
Theorized magnetic ...
University of Illinois researchers identified the top pathogens, pests and weeds affecting soybean production in a recent article in Food Security. Soybean aphid, soybean rust, soybean cyst nematode, Sclerotina stem rot and the exotic pathogen, red leaf blotch, were featured as some of the top biotic constraints that may affect soybean production now and in the future.
"Enormous potential exists to increase future soybean production," said Glen Hartman, U of I professor of crop sciences and USDA-ARS research scientist. "Genetic resources, used through both traditional ...
COLLEGE STATION, TX—Although water consumption and conservation are widely recognized as significant environmental concerns in the United States, most Americans are still unaware of the major impact of landscape irrigation on their regional water supplies. One startling example: a 2004 study of homeowners in College Station, Texas, estimated that more than 24 to 34 million gallons of excess water were used annually for landscape irrigation alone.
According to the authors of a study published in HortScience, end-users lack understanding of best management practices for ...
Johns Hopkins researchers have identified a natural mechanism that might one day be used to block the expression of the mutated gene known to cause Huntington's disease. Their experiments offer not an immediate cure, but a potential new approach to stopping or even preventing the development of this relentless neurodegenerative disorder.
Huntington's disease is a rare, fatal disorder caused by a mutation in a single gene and marked by progressive brain damage. Symptoms, which typically first appear in midlife, include jerky twitch-like movements, coordination troubles, ...
COLLEGE STATION, TX—Service learning involves the incorporation of community service into a course as a requirement for credit or graduation. In the service learning model, students participate in ''real life'' and hands-on activities while also working within the community. Researchers T.M. Waliczek and J.M. Zajicek reported on a study of service learning integrated into a university-level horticulture course in HortTechnology. The team found that involvement in service learning changed students' opinions regarding community involvement and also increased their understanding ...