(Press-News.org) Long before they knew they were doing it – as long ago as the Wright Brother's first airplane engine – metallurgists were incorporating nanoparticles in aluminum to make a strong, hard, heat-resistant alloy. The process is called solid-state precipitation, in which, after the melt has been quickly cooled, atoms of alloying metals migrate through a solid matrix and gather themselves in dispersed particles measured in billionths of a meter, only a few-score atoms wide.
Key to the strength of these precipitation-hardened alloys is the size, shape, and uniformity of the nanoparticles and how stable they are when heated. One alloy with a highly successful combination of properties is a particular formulation of aluminum, scandium, and lithium, whose precipitates are all nearly the same size. It was first made at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) in 2006 by a team led by Velimir Radmilović and Ulrich Dahmen of the Materials Sciences Division.
These scientists and their colleagues have now combined atomic-scale observations with the powerful TEAM microscope at Berkeley Lab's National Center for Electron Microscopy (NCEM) with atom-probe tomography and other experimental techniques, and with theoretical calculations, to reveal how nanoparticles consisting of cores rich in scandium and surrounded by lithium-rich shells can disperse in remarkably uniform sizes throughout a pure aluminum matrix.
"With the TEAM microscope we were able to study the core-shell structure of these nanoprecipitates and how they form spheres that are nearly the same in diameter," says Dahmen, the director of NCEM and an author of the Nature Materials paper describing the new studies. "What's more, these particles don't change size over time, as most precipitates do. Typically, small particles get smaller and large particles get larger, a process called ripening or coarsening, which eventually weakens the alloys. But these uniform core-shell nanoprecipitates resist change."
Evolution of an alloy
In the aluminum-scandium-lithium system the researchers found that, after the initial melt, a simple two-step heating process creates first the scandium-rich cores and then the lithium-rich shells of the spherical particles. The spheres self-limit their growth to achieve the same outer dimensions, yielding a lightweight, potentially heat- and corrosion-resistant, superstrong alloy.
"Scandium is the most potent strengthener for aluminum," says NCEM's Radmilović, who is also a professor of metallurgy at the University of Belgrade, Serbia, and an author of the Nature Materials paper. "Adding less than one percent scandium can make a dramatic difference in mechanical strength, fracture resistance, corrosion resistance – all kinds of properties." Because scandium diffuses very slowly through the solid aluminum matrix, the solid mix must be heated to a high temperature (short of melting) before scandium will precipitate.
Lithium is the lightest of all metals (only hydrogen and helium are lighter) and brings not only lightness to an aluminum alloy but, potentially, strength as well. Lithium diffuses much more rapidly than scandium, at much lower temperature.
"The problem is that, by itself, lithium may not live up to its promise," says Dahmen, a long-time collaborator with Radmilović. "The trick is to convince the lithium to take on a useful crystalline structure, namely L12."
The L12 unit cell resembles a face-centered cubic cell, among the simplest and most symmetric of crystal structures. Atoms occupy each corner of an imaginary cube and are centered in the cube's six faces; in the L12 structure, the kinds of atoms at the corners may differ from those at the centers of the faces. For alloy inclusions it's one of the strongest and stablest of structures because, as Dahmen explains, "once atoms are in place in L12, it's difficult for them to move."
Dahmen credits Radmilović with the "intuition" to alloy both scandium and lithium with aluminum, heating and cooling the material in a specific series of steps. That intuition was based on Radmilović's long experience with the separate properties of aluminum-lithium and aluminum-scandium alloys and a deep understanding of how they were likely to interact. He drew up a recipe for the proportions of ingredients in the initial melt and how to cool and rewarm them.
The key to the process was to use lithium as a kind of catalyst to force a "burst of nucleation" in the scandium. After the three metals are mixed, melted, and quickly cooled or quenched, lithium serves to lower the heating needed to coax scandium to form dense core structures – although the solid mix must still be heated to 450 degrees Celsius (842 Fahrenheit) for 18 hours to form these cores, made of aluminum, lithium, and scandium. The cores average a little over nine nanometers in diameter but are not uniform in size.
Next the alloy is heated again, this time to 190˚ Celsius (374˚ F) for four hours. At the lower temperature the scandium is immobile; the freely-moving lithium forms a shell around the scandium-rich cores, much as water in a cloud crystallizes around a speck of dust to make a snowflake. The shells average about 10.5 nanometers in thickness, but their thickness is not uniform.
What's remarkable, though, is that when a core is thicker than the average, the shell is thinner than the average, and vice versa: the smaller the core, the faster the shell grows. Core size and shell size are "anticorrelated" and the result is "size focused." Whole spheres still vary somewhat, but the differences are much less than among the cores alone or the shells alone.
The structure of the cores and shells embedded in aluminum seems equally remarkable. Pure aluminum itself has a face-centered-cubic structure, and this structure is seamlessly repeated by the L12 structure of both the cores and the shells, perfectly joined with no dislocations at the interfaces between core, shell, and matrix.
Dahmen says, "It's the scandium-rich cores that convince the lithium to take on the useful L12 structure."
Joining experiment with theory
Using the TEAM microscope and a special imaging technique to look down at the tops of the regular rows of columns of atoms, the L12 structure reveals itself in groups of interlocking squares, with four columns of atoms at the corners and five columns of atoms at the lined-up centers of the faces.
In pure aluminum, all the dots are the same brightness. In the shells and cores, however, the corner columns and the face-centered columns differ in contrast – the face-centered columns are pure aluminum but the corner columns are mixed. By supplementing the high-resolution TEAM images with data from other experimental techniques it was possible to use brightness and contrast to calculate the kinds of atoms in each column.
By employing first-principles calculations, team members Colin Ophus and Mark Asta were able to model the effect of lithium on the solid-state precipitation of scandium, stimulating a sudden burst of nucleation, and also to understand why, because of the thermodynamic properties of the two metals interacting with aluminum and with each other, the precipitates are so uniform and stable.
Radmilović says, "Colin and Mark showed that lithium and scandium like each other. They also showed that by using the aluminum columns as a standard, we can calculate the intensity of the scandium and lithium by the brightness of the spot." In the shells, the corner columns contain aluminum and about 10 percent lithium. In the cores, the corner columns contain all three metals.
Dahmen says, "In recent years there has been a rapid increase in the use of 'integrative microscopy' - using a variety of techniques such as high-angular annular dark-field imaging, high-resolution phase contrast, and energy-filtered imaging and spectroscopy to attack a single problem. The TEAM microscope, which is corrected for both chromatic and spherical aberration, is unique in its ability to do all these techniques with high resolution. Understanding why nanoinclusions in aluminum-scandium-lithium are uniform is one of the best examples for the need to use integrative microscopy."
As good an alloy as aluminum-scandium-lithium is, its use may be limited by the cost of rare scandium, presently ten times the price of gold. By understanding how the alloy achieves its remarkable characteristics, the researchers fully expect that other systems with core-shell precipitates can be controlled by the same mechanisms, leading to new kinds of alloys with a range of desirable properties.
INFORMATION:
"Highly monodisperse core-shell particles created by solid-state reactions," by Velimir Radmilović, Colin Ophus, Emmanuelle Marquis, Marta-Dacil Rossell, Alfredo Tolley, Abhay Gautam, Mark Asta, and Ulrich Dahmen, appears in Nature Materials at http://www.nature.com/nmat/index.html. Radmilović, Ophus, Rossell, Gautam, Asta, and Dahmen are presently or formerly with Berkeley Lab's Materials Sciences Division; Radmilović is also with the University of Belgrade, Marquis with the University of Michigan at Ann Arbor, Rossell with ETH Zurich, Tolley with Argentina's Comisión Nacional de Energia Atómica, and Asta with the University of California at Berkeley. This work was principally supported by DOE's Office of Science.
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.
The nanoscale secret to stronger alloys
Scientists at Berkeley Lab find nanoparticle size is readily controlled to make stronger aluminum alloys
2011-08-09
ELSE PRESS RELEASES FROM THIS DATE:
New resource to unlock the role of microRNAs
2011-08-09
A new resource to define the roles of microRNAs is announced today in Nature Biotechnology. The resource, called mirKO, gives researchers access to tools to investigate the biological role and significance for human health of these enigmatic genes.
mirKO is a "library" of mutant mouse embryonic stem (ES) cells in which individual, or clustered groups of microRNA genes, have been deleted. Using these tools researchers can create cells or mice lacking specific microRNAs, study expression using fluorescent markers, or inactivate the gene in specific tissues or at specific ...
UNC-Duke ties lead to collaborative finding about cell division & metabolism
2011-08-09
Chapel Hill, NC – Cells are the building blocks of the human body. They are a focus of scientific study, because when things go wrong at the cellular and molecular level the consequences for human health are often significant.
A new finding based on multiple collaborations between UNC and Duke scientists over several years points to new avenues for investigation of cell metabolism that may provide insights into diseases ranging from neurodegenerative disorders like Parkinson's and Alzheimer's disease to certain types of cancers.
The finding, published today in the ...
Brain's map of space falls flat when it comes to altitude
2011-08-09
Animal's brains are only roughly aware of how high-up they are in space, meaning that in terms of altitude the brain's 'map' of space is surprisingly flat, according to new research.
In a study published online today in Nature Neuroscience, scientists studied cells in or near a part of the brain called the hippocampus, which forms the brain's map of space, to see whether they were activated when rats climbed upwards.
The study, supported by the Wellcome Trust, looked at two types of cells known to be involved in the brain's representation of space: grid cells, which ...
Cell-based alternative to animal testing
2011-08-09
European legislation restricts animal testing within the pharmaceutical and cosmetic industries and companies are increasingly looking at alternative systems to ensure that their products are safe to use. Research published in BioMed Central's open access journal BMC Genomics demonstrates that the response of laboratory grown human cells can now be used to classify chemicals as sensitizing, or non-sensitizing, and can even predict the strength of allergic response, so providing an alternative to animal testing.
Allergic contact dermatitis can result in itching and eczema ...
Research discovers frequent mutations of chromatin remodeling genes in TCC of the bladder
2011-08-09
August 8th, 2011, Shenzhen, China – BGI, the world's largest genomics organization, Peking University Shenzhen Hospital and Shenzhen Second People's Hospital, announced today that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of the bladder was published online in Nature Genetics. This study provides a valuable genetic basis for future studies on TCC, suggesting that aberration of chromatin regulation might be one of the features of bladder cancer.
Bladder cancer is the ninth most common type of cancer worldwide, which ...
How yeast chromosomes avoid the bad breaks
2011-08-09
CAMBRIDGE, Mass. (August 7, 2011) – The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence. During meiosis—the cell division that produces sperm and eggs—repetitive elements place the genome at risk for dangerous rearrangements from genome reshuffling. This recombination typically does not occur in repetitive DNA, in part because much of it is assembled into specialized heterochromatin. Other mechanisms that restrain recombination in repetitive DNA have remained elusive, until now.
In a ...
Researchers gain new insights into how tumor cells are fed
2011-08-09
Philadelphia, PA, August 8, 2011 – Researchers have gained a new understanding of the way in which growing tumors are fed and how this growth can be slowed via angiogenesis inhibitors that eliminate the blood supply to tumors. This represents a step forward towards developing new anti-cancer drug therapies. The results of this study have been published today in the September issue of The American Journal of Pathology.
"The central role of capillary sprouting in tumor vascularization makes it an attractive target for anticancer therapy. Our observations suggest, however, ...
Genetic analysis of amniotic fluid shows promise for monitoring fetal development
2011-08-09
Philadelphia, PA, August 8, 2011 – Researchers have demonstrated the feasibility of focused fetal gene expression analysis of target genes found in amniotic fluid using Standardized NanoArray PCR (SNAP) technology. This analysis could be used to monitor fetal development, enabling clinicians to determine very early in pregnancy whether fetal organ systems are developing normally. The study appears today in the September issue of The Journal of Molecular Diagnostics.
Using a previously developed SNAP gene panel as proof of concept, investigators from the Floating Hospital ...
Early morning smokers have increased risk of lung and head and neck cancers
2011-08-09
Two new studies have found that smokers who tend to take their first cigarette soon after they wake up in the morning may have a higher risk of developing lung and head and neck cancers than smokers who refrain from lighting up right away. Published early online in Cancer, a peer-reviewed journal of the American Cancer Society, the results may help identify smokers who have an especially high risk of developing cancer and would benefit from targeted smoking interventions to reduce their risk.
Cigarette smoking increases one's likelihood of developing various types of ...
Technique to stimulate heart cells may lead to light-controlled pacemakers
2011-08-09
A new technique that stimulates heart muscle cells with low-energy light raises the possibility of a future light-controlled pacemaker, researchers reported in Circulation: Arrhythmia & Electrophysiology, a journal of the American Heart Association.
"Electronic cardiac pacemakers and defibrillators are well established and successful technologies, but they are not without problems, including the breakage of metal leads, limited battery life and interference from strong magnetic fields," said Emilia Entcheva, Ph.D., senior author of the study and associate professor of ...
LAST 30 PRESS RELEASES:
Long before the L.A. fires, America’s housing crisis displaced millions
Breaking barriers: Collaborative research studies binge eating disorders in older Hispanic women
UVA receives DURIP grant for cutting-edge ceramic research system
Gene editing extends lifespan in mouse model of prion disease
Putting a lid on excess cholesterol to halt bladder cancer cell growth
Genetic mutation linked to higher SARS-CoV-2 risk
UC Irvine, Columbia University researchers invent soft, bioelectronic sensor implant
Harnessing nature to defend soybean roots
Yes, college students gain holiday weight too—but in the form of muscle not fat
Beach guardians: How hidden microbes protect coastal waters in a changing climate
Rice researchers unlock new insights into tellurene, paving the way for next-gen electronics
New potential treatment for inherited blinding disease retinitis pigmentosa
Following a 2005 policy, episiotomy rates have reduced in France without an overall increase in anal sphincter injuries during labor, with more research needed to confirm the safest rate of episiotomi
Rats anticipate location of food-guarding robots when foraging
The American Association for Anatomy announces their Highest Distinctions of 2025
Diving deep into dopamine
Automatic speech recognition on par with humans in noisy conditions
PolyU researchers develop breakthrough method for self-stimulated ejection of freezing droplets, unlocking cost-effective applications in de-icing
85% of Mexican Americans with dementia unaware of diagnosis, outpacing overall rate
Study reveals root-lesion nematodes in maize crops - and one potential new species
Bioinspired weather-responsive adaptive shading
Researchers uncover what drives aggressive bone cancer
Just as Gouda: Improving the quality of cheese alternatives
Digital meditation to target employee stress
Electronic patient-reported outcome system implementation in outpatient cardiovascular care
Knowledge and use of menthol-mimicking cigarettes among adults in the US
Uncurling a single DNA molecule and gluing it down helps sharpen images
Medicare Advantage beneficiaries did not receive more dental, vision or hearing care
Green hydrogen: Big gaps between ambition and implementation
Global study pinpoints genes for depression across ethnicities
[Press-News.org] The nanoscale secret to stronger alloysScientists at Berkeley Lab find nanoparticle size is readily controlled to make stronger aluminum alloys