Solar power could get boost from new light absorption design
2011-11-03
(Press-News.org) Solar power may be on the rise, but solar cells are only as efficient as the amount of sunlight they collect. Under the direction of a new professor at Northwestern University's McCormick School of Engineering and Applied Science, researchers have developed a new material that absorbs a wide range of wavelengths and could lead to more efficient and less expensive solar technology.
A paper describing the findings, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," was published Tuesday in the journal Nature Communications.
"The solar spectrum is not like a laser – it's very broadband, starting with UV and going up to near-infrared," said Koray Aydin, assistant professor of electrical engineering and computer science and the paper's lead author. "To capture this light most efficiently, a solar cell needs to have a broadband response. This design allows us to achieve that."
The researchers used two unconventional materials – metal and silicon oxide – to create thin but complex, trapezoid-shaped metal gratings on the nanoscale that can trap a wider range of visible light. The use of these materials is unusual because on their own, they do not absorb light; however, they worked together on the nanoscale to achieve very high absorption rates, Aydin said.
The uniquely shaped grating captured a wide range of wavelengths due to the local optical resonances, causing light to spend more time inside the material until it gets absorbed. This composite metamaterial was also able to collect light from many different angles – a useful quality when dealing with sunlight, which hits solar cells at different angles as sun moves from east to west throughout the day.
This research is not directly applicable to solar cell technology because metal and silicon oxide cannot convert light to electricity; in fact, the photons are converted to heat and might allow novel ways to control the heat flow at the nanoscale. However, the innovative trapezoid shape could be replicated in semiconducting materials that could be used in solar cells, Aydin said.
If applied to semiconducting materials, the technology could lead to thinner, lower-cost, and more efficient solar cells, he said.
INFORMATION: END
ELSE PRESS RELEASES FROM THIS DATE:
2011-11-03
BUFFALO, N.Y. -- Exenatide, a drug commonly prescribed to help patients with type 2 diabetes improve blood sugar control, also has a powerful and rapid anti-inflammatory effect, a University at Buffalo study has shown.
The study of the drug, marketed under the trade name Byetta, was published recently in the Journal of Clinical Endocrinology and Metabolism.
"Our most important finding was this rapid, anti-inflammatory effect, which may lead to the inhibition of atherosclerosis, the major cause of heart attacks, strokes and gangrene in diabetics," says Paresh Dandona, ...
2011-11-03
WASHINGTON, Nov. 2—In the emerging field of tissue engineering, scientists encourage cells to grow on carefully designed support scaffolds. The ultimate goal is to create living structures that might one day be used to replace lost or damaged tissue, but the manufacture of appropriately detailed scaffolds presents a significant challenge that has kept most tissue engineering applications confined to the research lab. Now a team of researchers from the Laser Zentrum Hannover (LZH) eV Institute in Hannover, Germany, and the Joint Department of Biomedical Engineering at the ...
2011-11-03
Oversensitivity diseases, or allergies, now affect 25 per cent of the population of Denmark. The figure has been on the increase in recent decades and now researchers at the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), University of Copenhagen, are at last able to partly explain the reasons.
"In our study of over 400 children we observed a direct link between the number of different bacteria in their rectums and the risk of development of allergic disease later in life," says Professor Hans Bisgaard, consultant at Gentofte Hospital, head of the Copenhagen ...
2011-11-03
Philadelphia, PA, November 2, 2011 – Cardiovascular Magnetic Resonance (CMR) has undergone substantial development and offers important advantages compared with other well-established imaging modalities. In the November/December issue of Progress in Cardiovascular Diseases, published by Elsevier, a series of articles on key topics in CMR will foster greater understanding of the rapidly expanding role of CMR in clinical cardiology.
"Until a decade ago, CMR was considered mostly a research tool, and scans for clinical purpose were rare," stated guest editors Theodoros ...
2011-11-03
The world may seem painted with endless color, but physiologically the human eye sees only three bands of light — red, green, and blue. Now a Tel Aviv University-developed technology is using colors invisible to the naked eye to analyze the world we live in. With the ability to detect more than 1,000 colors, the "hyperspectral" (HSR) camera, like Mr. Spock's sci-fi "Tricorder," is being used to "diagnose" contaminants and other environmental hazards in real time.
Prof. Eyal Ben-Dor of TAU's Department of Geography and the Human Environment says that reading this extensive ...
2011-11-03
One of two proteins that regulate nerve cells and assist in overall brain function may be the key to preventing long-term damage as a result of a stroke, the leading cause of disability and third leading cause of death in the United States.
In a recent study published in the Journal of Neuroscience, Bonnie Firestein, professor of cell biology and neuroscience, in the School of Arts and Sciences, says the new research indicates that increased production of two proteins – cypin and PSD-95 – results in very different outcomes.
While cypin – a protein that regulates nerve ...
2011-11-03
Cold Spring Harbor, N.Y. – Cancer cells maintain their life-style of extremely rapid growth and proliferation thanks to an enzyme called PK-M2 (pyruvate kinase M2) that alters the cells' ability to metabolize glucose – a phenomenon known as the Warburg effect.
Professor Adrian Krainer, Ph.D., and his team at Cold Spring Harbor Laboratory (CSHL), who seek to reverse this effect and force cancer cells to regain the metabolism of normal cells, have discovered details of molecular events that cause cancer cells to produce PK-M2 instead of its harmless counterpart, an isoform ...
2011-11-03
The discovery of 13 diffuse interstellar bands with the longest wavelengths to date could someday solve a 90-year-old mystery.
Astronomers have identified the new bands using data collected by the Gemini North telescope of stars in the center of the Milky Way.
Nature reports on its website today findings that support recent ideas about the presence of large, possibly carbon-based organic molecules—"carriers"—hidden in interstellar dust clouds. The paper will also appear in the Nov. 10 print issue of the journal.
"These diffuse interstellar bands—or DIBs—have never ...
2011-11-03
Members of our species (Homo sapiens) arrived in Europe several millennia earlier than previously thought. At this conclusion a team of researchers, led by the Department of Anthropology, University of Vienna, arrived after re-analyses of two ancient deciduous teeth. These teeth were discovered 1964 in the "Grotta del Cavallo", a prehistoric cave in southern Italy. Since their discovery they have been attributed to Neanderthals, but this new study suggests they belong to anatomically modern humans. Chronometric analysis, carried out by the Oxford Radiocarbon Accelerator ...
2011-11-03
MANHATTAN, Kan. -- The source of arsenic in India's groundwater continues to elude scientists more than a decade after the toxin was discovered in the water supply of the Bengal delta in India. But a recent study with a Kansas State University geologist and graduate student, as well as Tulane University, has added a twist -- and furthered the mystery.
Arsenic is a naturally occurring trace element, and it causes skin lesions, respiratory failure and cancer when present in high concentrations in drinking water. The environmental crisis began after large traces of the element ...
LAST 30 PRESS RELEASES:
[Press-News.org] Solar power could get boost from new light absorption design