PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Astronomers discover deep-fried planets

2 Earth-sized planets have been discovered around a dying star that has passed the red giant stage

Astronomers discover deep-fried planets
2011-12-22
(Press-News.org) Two Earth-sized planets have been discovered circling a dying star that has passed the red giant stage. Because of their close orbits, the planets must have been engulfed by their star while it swelled up to many times its original size.

This discovery, published in the science journal Nature, may shed new light on the destiny of stellar and planetary systems, including our solar system.

When our sun nears the end of its life in about 5 billion years, it will swell up to what astronomers call a red giant, an inflated star that has used up most of its fuel. So large will the dying star grow that its fiery outer reaches will swallow the innermost planets of our solar system – Mercury, Venus, Earth and Mars.

Researchers believed that this unimaginable inferno would make short work of any planet caught in it – until now.

This report describes the first discovery of two planets – or remnants thereof – that evidently not only survived being engulfed by their parent star, but also may have helped to strip the star of most of its fiery envelope in the process. The team was led by Stephane Charpinet, an astronomer at the Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse-CNRS, in France.

"When our sun swells up to become a red giant, it will engulf the Earth," said Elizabeth 'Betsy' Green, an associate astronomer at the University of Arizona's Steward Observatory, who participated in the research. "If a tiny planet like the Earth spends 1 billion years in an environment like that, it will just evaporate. Only planets with masses very much larger than the Earth, like Jupiter or Saturn, could possibly survive."

The two planets, named KOI 55.01 and KOI 55.02, circle their host star in extremely tight orbits. Having migrated so close, they probably plunged deep into the star's envelope during the red giant phase, but survived. In the most plausible configuration, the two bodies would respectively have radii of 0.76 and 0.87 times the Earth radius, making them the smallest planets so far detected around an active star other than our sun.

The host star, KOI 55, is what astronomers call a subdwarf B star: It consists of the exposed core of a red giant that has lost nearly its entire envelope. In fact, the authors write, the planets may have contributed to the increased mass loss necessary for the formation of this type of star.

The authors concluded that planetary systems may therefore influence the evolution of their parent stars. They pointed out that the planetary system they observed offers a glimpse into the possible future of our own.

The discovery of the two planets came as a surprise because the research team had not set out to find new planets far away from our solar system, but to study pulsating stars. Caused by rhythmic expansions and contractions brought about by pressure and gravitational forces that go along with the thermonuclear fusion process inside the star, such pulsations are a defining feature of many stars.

By studying the pulsations of a star, astronomers can deduce the object's mass, temperature, size and sometimes even its interior structure. This is called asteroseismology.

"Those pulsation frequency patterns are almost like a finger print of a star," Green said. "It's very much like seismology, where one uses earthquake data to learn about the inner composition of the Earth."

To detect the frequencies with which a star pulsates, researchers have to observe it for very long periods of time, sometimes years, in order to measure tiny variations in brightness.

"The brightness variations of a star tell us about its pulsational modes if we can observe enough of them very precisely," Green said. "Let's say there is one pulsational mode every 5859.8 seconds, and there is another one every 9126.39 seconds. There could be lots of stars with rather different properties that could all manage to pulsate at those two frequencies. However, if we can measure 10, or better yet, 50 pulsational modes in one star, then it's possible to use theoretical models to say exactly what the star must be like in order to produce those particular pulsations."

"The only way to do that is to have a telescope sitting in space," she added. "On Earth, we can only observe a star at night. But unless we follow it 24/7, the mathematics give us artifacts. Observing through the atmosphere means that even in the very best of cases we can only detect brightness variations to a ten-thousandth of a percent. But if you've got 50 or a 100 modes going in a star, you need to measure better than that."

For that reason, the team used data obtained from NASA's Kepler Space Telescope for this study.

Unobstructed by the Earth's atmosphere and staring at the same patch of sky throughout its five-year mission, the Kepler Space Telescope sits in a prime spot to detect tiny variations in brightness of stars.

Green had been pursuing a survey to look for hot subdwarf stars in the galactic plane of the Milky Way.

"I had already obtained excellent high-signal to noise spectra of the hot subdwarf B star KOI 55 with our telescopes on Kitt Peak, before Kepler was even launched," she said. "Once Kepler was in orbit and began finding all these pulsational modes, my co-authors at the University of Toulouse and the University of Montreal were able to analyze this star immediately using their state-of-the art computer models."

This was the first time that researchers were able to use gravity pulsation modes, which penetrate into the core of the star, to match subdwarf B star models to learn about their interior structure.

While analyzing KOI 55's pulsations, the team noticed the intriguing presence of two tiny periodic modulations occurring every 5.76 and 8.23 hours that caused the star to flicker ever so slightly, at one five thousandth percent of its overall brightness. They showed that these two frequencies could not have been produced by the star's own internal pulsations.

The only explanation came from the existence two small planets passing in front of the star every 5.76 and 8.23 hours. To complete their orbits so rapidly, KOI 55.01 and KOI 55.02 have to be extremely close to the star, much closer than Mercury is to our sun. On top of that, the sun is a cool star compared to KOI 55, which burns at about 28,000 Kelvin, or 50,000 degrees Fahrenheit.

"Planets this close to their star are tidally locked," Green said, "meaning the same side always faces the star, just like the same face of the moon always faces the Earth. The day side of Mercury is hot enough to melt lead, so you can imagine the harsh conditions on those two small planets racing around a host star that is five times hotter than our sun at such a close distance."

The extremely tight orbits are important because they tell the researchers that the planets must have been engulfed when their host stars swelled up into a red giant.

"Having migrated so close, they probably plunged deep into the star's envelope during the red giant phase, but survived," lead author Charpinet said.

"As the star puffs up and engulfs the planet, the planet has to plow through the star's hot atmosphere and that causes friction, sending it spiraling toward the star," Green added. "As it's doing that, it helps strip atmosphere off the star. At the same time, the friction with the star's envelope also strips the gaseous and liquid layers off the planet, leaving behind only some part of the solid core, scorched but still there."

"We think this is the first documented case of planets influencing a star's evolution," Charpinet said. "We know of a brown dwarf that possibly did that, but that's not a planet, and of giants planets around subdwarf B stars, but those are too far away to have had any impact on the evolution of the star itself."

"I find it incredibly fascinating that after hundreds of years of being able to only look at the outsides of stars, now we can finally investigate the interiors of a few stars – even if only in these special types of pulsators – and compare that with how we thought stars evolved," Green said. "We thought we had a pretty good understanding of what solar systems were like as long as we only knew one – ours. Now we are discovering a huge variety of solar systems that are nothing like ours, including, for the first time, remnant planets around a stellar core like this one."

INFORMATION:

Reference:

"A compact system of small planets around a former red-giant star," by S. Charpinet et al., Nature, Dec. 22, 2011

[Attachments] See images for this press release:
Astronomers discover deep-fried planets

ELSE PRESS RELEASES FROM THIS DATE:

San Diego Mold Remediation Company Offers Advanced Mold Testing

2011-12-22
Orange Restoration, based in San Diego, adds legally binding mold and hazardous material lab testing to their growing list of professional services. Testing services include air, surface and swab testing, testing or lead and/or asbestos and post remediation cleanup testing. Nearly anyone can look at a black spot on a wall or ceiling and declare, you have black mold and need to have it professionally cleaned. Few companies have the expertise to perform scientific testing to confirm both the type and quantity of the contamination being observed. Orange Restoration's ...

Discovery of 2 Earth-size planets raises questions about the evolution of stars

2011-12-22
This press release is available in French. University of Toulouse and University of Montreal researchers have detected two planets of sizes comparable to Earth orbiting around an old star that has just passed the red giant stage. This planetary system is located near Lyra and Cygnus constellations at a distance of 3900 light years. This discovery, to be published by in Nature on December 22 2011, may shed new light on the destiny of stellar and planetary systems. "The two planets, named KOI 55.01 and KOI 55.02, are on very short orbits around their host star," explained ...

Researchers develop new method of cleaning toxins from the oilsands

Researchers develop new method of cleaning toxins from the oilsands
2011-12-22
Alberta's oilsands have water challenges. Oilsands development uses a vast amount of water and even though it's recycled multiple times, the recycling concentrates the toxins and metals leftover from extracting and upgrading the bitumen, resulting in tailings ponds that are both a lightening rod for controversy and a significant risk to the environment. A research project underway between biologists at the University of Calgary and engineers at the University of Alberta to help resolve the water issue is making rapid progress toward that goal. Two years into the research, ...

Clarke BEXT Pro Portable Extractor Delivers Superior Cleaning Power with Enhanced Cleaning Flexibility

Clarke BEXT Pro Portable Extractor Delivers Superior Cleaning Power with Enhanced Cleaning Flexibility
2011-12-22
Clarke, a brand of Nilfisk-Advance, Inc., introduces the latest addition to the company's line of carpet extractors, the BEXT Pro Portable Extractor. Delivering instant, continuous heat of 212 degrees Fahrenheit solution, the BEXT Pro effectively attacks tough carpet stains. The BEXT Pro is available in two pressures--100 psi and 400 psi--in addition to models with heated and non-heated performance, providing operators with the ultimate cleaning flexibility to satisfy applications ranging from light duty cleaning to deep extraction requirements. With a durable, user-friendly ...

Exploiting Trichoderma: From food security to biotechnology

2011-12-22
From improving food security to their use as biotechnology power horses, Trichoderma fungi are increasingly being exploited by industry. Current advances in the field are brought together and highlighted in a special issue of Microbiology published online on 27 December. Trichoderma are free-living fungi widely used in agricultural biotechnology. Some species of Trichoderma are specifically used as biocontrol agents to control plant pathogens including Fusarium species. Their success is partly due to mycoparasitism – a lifestyle where one fungus is parasitic on another ...

Self-regulation of the immune system suppresses defense against cancer

2011-12-22
It is vital that the body's own immune system does not overreact. If its key players, the helper T cells, get out of control, this can lead to autoimmune diseases or allergies. An immune system overreaction against infectious agents may even directly damage organs and tissues. Immune cells called regulatory T cells ("Tregs") ensure that immune responses take place in a coordinated manner: They downregulate the dividing activity of helper T cells and reduce their production of immune mediators. "This happens through direct contact between regulatory cell and helper cell," ...

Balancing the womb

2011-12-22
New research hopes to explain premature births and failed inductions of labour. The study by academics at the University of Bristol suggests a new mechanism by which the level of myosin phosphorylation is regulated in the pregnant uterus. The researchers, Dr Claire Hudson and Professor Andrés López Bernal in the School of Clinical Sciences and Dr Kate Heesom in the University Proteomics Facility and the School of Biochemistry, have discovered that phosphorylation of uterus proteins at specific amino acids have a key role in the regulation of uterine activity in labour. A ...

Monitoring food with millimeter waves

Monitoring food with millimeter waves
2011-12-22
Has the packet been properly filled? Are there impurities in the chocolate? Have the plastic seams been welded correctly? Is there a knife hidden in the parcel? Answers to all these questions are provided by SAMMI, short for Stand Alone MilliMeter wave Imager. The millimeter-wave sensor is able to see through all non-transparent materials. Researchers at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg have developed the device, whichat 50 centimeters wide and 32 centimeters high is no larger than a compact laser printer. SAMMI can ...

New Upright Vacuum from Advance Delivers Exceptional Cleaning Performance for the Hospitality Market

New Upright Vacuum from Advance Delivers Exceptional Cleaning Performance for the Hospitality Market
2011-12-22
Advance introduces the newest addition to the company's upright vacuum product line with the Spectrum 12H Single Motor Upright Vacuum. With high-quality dirt pickup and filtration capabilities, the Spectrum 12H is designed to withstand the demanding environmental conditions and the unique operational needs found in the hospitality market. "The hospitality industry requires continuous cleaning and carpet maintenance to ensure excellent guest satisfaction," said Bob Abrams, Product Manager for Nilfisk-Advance. "The Spectrum 12H meets these requirements with ...

How to break Murphy's Law

2011-12-22
Murphy's Law is a useful scapegoat for human error: "If something can go wrong, it will." But, a new study by researchers in Canada hopes to put paid to this unscientific excuse for errors by showing that the introduction of verification and checking procedures can improve structural safety and performance and so prevent the application of the "law". Engineer Franz Knoll of Nicolet Chartrand Knoll Ltd., based in Montreal, Quebec, writing in the International Journal of Reliability and Safety explains that faults and flaws in any industrial product almost always originate ...

LAST 30 PRESS RELEASES:

Global cervical cancer vaccine roll-out shows it to be very effective in reducing cervical cancer and other HPV-related disease, but huge variations between countries in coverage

Negativity about vaccines surged on Twitter after COVID-19 jabs become available

Global measles cases almost double in a year

Lower dose of mpox vaccine is safe and generates six-week antibody response equivalent to standard regimen

Personalised “cocktails” of antibiotics, probiotics and prebiotics hold great promise in treating a common form of irritable bowel syndrome, pilot study finds

Experts developing immune-enhancing therapies to target tuberculosis

Making transfusion-transmitted malaria in Europe a thing of the past

Experts developing way to harness Nobel Prize winning CRISPR technology to deal with antimicrobial resistance (AMR)

CRISPR is promising to tackle antimicrobial resistance, but remember bacteria can fight back

Ancient Maya blessed their ballcourts

Curran named Fellow of SAE, ASME

Computer scientists unveil novel attacks on cybersecurity

Florida International University graduate student selected for inaugural IDEA2 public policy fellowship

Gene linked to epilepsy, autism decoded in new study

OHSU study finds big jump in addiction treatment at community health clinics

Location, location, location

Getting dynamic information from static snapshots

Food insecurity is significant among inhabitants of the region affected by the Belo Monte dam in Brazil

The Society of Thoracic Surgeons launches new valve surgery risk calculators

Component of keto diet plus immunotherapy may reduce prostate cancer

New circuit boards can be repeatedly recycled

Blood test finds knee osteoarthritis up to eight years before it appears on x-rays

April research news from the Ecological Society of America

Antimicrobial resistance crisis: “Antibiotics are not magic bullets”

Florida dolphin found with highly pathogenic avian flu: Report

Barcodes expand range of high-resolution sensor

DOE Under Secretary for Science and Innovation visits Jefferson Lab

Research expo highlights student and faculty creativity

Imaging technique shows new details of peptide structures

MD Anderson and RUSH unveil RUSH MD Anderson Cancer Center

[Press-News.org] Astronomers discover deep-fried planets
2 Earth-sized planets have been discovered around a dying star that has passed the red giant stage