PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Graphene rips follow rules

Rice University simulations show carbon sheets tear along energetically favorable lines

2012-01-09
(Press-News.org) HOUSTON -- Research from Rice University and the University of California at Berkeley may give science and industry a new way to manipulate graphene, the wonder material expected to play a role in advanced electronic, mechanical and thermal applications.

When graphene – a one-atom thick sheet of carbon – rips under stress, it does so in a unique way that puzzled scientists who first observed the phenomenon. Instead of tearing randomly like a piece of paper would, it seeks the path of least resistance and creates new edges that give the material desirable qualities.

Because graphene's edges determine its electrical properties, finding a way to control them will be significant, said Boris Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry.

It's rare that Yakobson's work as a theoretical physicist appears in the same paper with experimental evidence, but the recent submission in Nano Letters titled "Ripping Graphene: Preferred Directions" is a notable exception, he said.

Yakobson and Vasilii Artyukhov, a postdoctoral researcher at Rice, recreated in computer simulations the kind of ripping observed through an electron microscope by researchers at Berkeley.

The California team noticed that cracks in flakes of graphene followed armchair or zigzag configurations, terms that refer to the shape of the edges created. It seemed that molecular forces were dictating how graphene handles stress.

Those forces are robust. Carbon-carbon bonds are the strongest known to man. But the importance of this research, Yakobson said, lies in the nature of the edge that results from the rip. The edge of a sheet of graphene gives it particular qualities, especially in the way it handles electric current. Graphene is so conductive that current flows straight through without impediment – until it reaches the edge. What the current finds there makes a big difference, he said, in whether it stops in its tracks or flows to an electrode or another sheet of graphene.

"Edge energy" in graphene and carbon nanotubes has long been of interest to Yakobson, who issued a paper last year with a formula to define the energy of a piece of graphene cut at any angle. In molecular carbon, armchair and zigzag edges are the most desirable because atoms along the edge are spaced at regular intervals and their electrical properties are well-known: Zigzag graphene is metallic, and armchair graphene is semiconducting. Figuring out how to rip graphene for nanoribbons with edges that are all one type or the other would be a breakthrough for manufacturers.

Yakobson and his team determined that graphene seeks the most energy-efficient path. The Berkeley team noticed that multiple cracks in a flake of graphene flowed strictly along lines that were at (or at multiples of) 30 degrees apart from each other.

"Graphene prefers to tear by expending the least amount of energy," Yakobson said. He noted the 30-degree separation between the angles that differentiate zigzag and armchair in a hexagonal graphene lattice.

To prove it, Artyukhov spent two months building molecular simulations that pulled virtual scraps of graphene apart in various ways. Depending on the force applied, a flake would rip along a straight line or fork in two directions. But the edges produced would always be along 30-degree lines and would be either zigzag or armchair.

"Basically, the direction of the crack in classical fracture theory is determined by the path it could take with the minimal cost in energy," Artyukhov said. "My simulations showed that under some conditions, this could be the case with graphene. It provided a pretty reasonable and clear and solid explanation for this unusual experimental thing."

Artyukhov found that pulling too hard on virtual graphene would shatter it. "Our main effort was to pull on it delicately enough that it has time to pick the direction it would prefer, rather than have a complete failure." He noted the simulations were much faster than rips that would happen in real-world circumstances.

Also surprising was the discovery that rips in graphene across grain boundaries follow the same rules. Tears do not follow the boundary, which would create energetically unfavorable edges, but pass through and switch to the most favorable direction in the new grain.

"The Berkeley folks didn't do controllable tears, but their work opens technological possibilities for the future," Yakobson said. "For electronics, you want ribbons that go in a particular direction, and this research suggests that this is possible. It would be a big deal.

"Think of graphene like a sheet of postage stamps: You apply a load, and you can tear the sheet in a well-defined direction. That's basically what this experiment reveals for graphene," he said. "There are invisible directions prepared for you."

### Co-authors are Rice graduate student Yuanyue Liu as well as graduate students Kwanpyo Kim and William Regan and Professors Michael Crommie and Alex Zettl, all of the University of California at Berkeley.

The research was supported by the Department of Energy, the National Science Foundation and the Office of Naval Research (MURI) and by the Lockheed Martin Corp. through LANCER.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nl203547z

Simulation video for embedding: http://www.youtube.com/watch?v=7V54YQjIJO0

CAPTION A series of computer simulations show that under stress, graphene will rip along paths that leave armchair or zigzag edges. Both types of edge favorable for particular electronic applications, said researchers at Rice University, where the simulations were carried out. (Credit: Vasilii Artyukhov/Rice University)

More simulations are available for viewing at http://pubs.acs.org/doi/suppl/10.1021/nl203547z. Permission to reproduce videos published by ACS must be obtained via RightsLink, http://pubs.acs.org/page/copyright/permissions.html.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf.


ELSE PRESS RELEASES FROM THIS DATE:

Study finds air pollution linked to diabetes and hypertension in African-American women

2012-01-09
(Boston) -The incidence of type 2 diabetes and hypertension increases with cumulative levels of exposure to nitrogen oxides, according to a new study led by researchers from the Slone Epidemiology Center (SEC) at Boston University. The study, which appears online in the journal Circulation, was led by Patricia Coogan, D.Sc., associate professor of epidemiology at the Boston University School of Public Health and the SEC. While it is well established that air pollution increases the risks of acute cardiovascular events such as stroke and myocardial infarction, it is not ...

Cell-CT: A new dimension in breast cancer research

Cell-CT: A new dimension in breast cancer research
2012-01-09
Despite advances in both the diagnosis and treatment of breast cancer, the disease remains a leading worldwide health concern. Now, a new imaging technology under investigation at the Biodesign Institute at Arizona State University may help researchers pinpoint subtle aberrations in cell nuclear structure, the molecular biosignature of cancer, thus significantly improving diagnostic accuracy and prognosis by providing early detection of the disease. The team, led by Professor Deirdre Meldrum, ASU Senior Scientist and Director of the Center for Biosignatures Discovery ...

Down to the wire for silicon: Researchers create a wire 4 atoms wide, 1 atom tall

Down to the wire for silicon: Researchers create a wire 4 atoms wide, 1 atom tall
2012-01-09
WEST LAFAYETTE, Ind. - The smallest wires ever developed in silicon - just one atom tall and four atoms wide - have been shown by a team of researchers from the University of New South Wales, Melbourne University and Purdue University to have the same current-carrying capability as copper wires. Experiments and atom-by-atom supercomputer models of the wires have found that the wires maintain a low capacity for resistance despite being more than 20 times thinner than conventional copper wires in microprocessors. The discovery, which was published in this week's journal ...

Proton therapy effective prostate cancer treatment

2012-01-09
Proton therapy, a type of external beam radiation therapy, is a safe and effective treatment for prostate cancer, according to two new studies published in the January issue of the International Journal of Radiation Oncology•Biology•Physics (Red Journal), the American Society for Radiation Oncology's (ASTRO) official scientific journal. In the first study, researchers at the University of Florida in Jacksonville, Fla., prospectively studied 211 men with low-, intermediate-, and high-risk prostate cancer. The men were treated with proton therapy, a specialized type of ...

ISU scientist helps find structure of gene-editing protein named Method of the Year

2012-01-09
AMES, Iowa – In the two and a half years since Adam Bogdanove, professor at Iowa State University in the Department of Plant Pathology and Microbiology, along with Matthew Moscou, a former graduate student in that department, discovered how a class of proteins from plant pathogenic bacteria find and bind specific sequences in plant genomes, researchers worldwide have moved fast to use this discovery. Last year it was first shown that the proteins can be fused to DNA modifying enzymes to manipulate genes and gene functions by Bogdanove and colleagues at the University ...

Flatworm flouts fundamental rule of biology

Flatworm flouts fundamental rule of biology
2012-01-09
A tiny, freshwater flatworm found in ponds and rivers around the world that has long intrigued scientists for its remarkable ability to regenerate has now added a new wrinkle to biology. Reporting in the journal Science today, researchers at the University of California, San Francisco (UCSF) and the Stowers Institute for Medical Research in Kansas City, MO, have discovered that the worm lacks a key cellular structure called a "centrosome," which scientists have considered essential for cell division. Every animal ever examined, from the mightiest mammals to the lowliest ...

Earth's massive extinction: The story gets worse

Earths massive extinction: The story gets worse
2012-01-09
Scientists have uncovered a lot about the Earth’s greatest extinction event that took place 250 million years ago when rapid climate change wiped out nearly all marine species and a majority of those on land. Now, they have discovered a new culprit likely involved in the annihilation: an influx of mercury into the eco-system. “No one had ever looked to see if mercury was a potential culprit. This was a time of the greatest volcanic activity in Earth’s history and we know today that the largest source of mercury comes from volcanic eruptions,” says Dr. Steve Grasby, co-author ...

3-dimensional view of 1-dimensional nanostructures

3-dimensional view of 1-dimensional nanostructures
2012-01-09
Just 100 nanometers in diameter, nanowires are often considered one-dimensional. But researchers at Northwestern University have recently reported that individual gallium nitride nanowires show strong piezoelectricity – a type of charge-generation caused by mechanical stress – in three dimensions. The findings, led by Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, were published online Dec. 22 in Nano Letters. Gallium nitride (GaN) is among the most technologically ...

Another outbreak of coral disease hits the reefs of Kane'ohe Bay, O'ahu

2012-01-09
In March 2010 an outbreak of a disease called acute Montipora White Syndrome (MWS) was discovered affecting coral reefs in Kaneohe Bay, Oahu. Follow-up surveys found that the disease left trails of rubble in its wake. It was estimated that over 100 colonies of rice coral (Montipora capitata) died during that initial outbreak. The disease has reappeared and is killing corals in Kaneohe Bay. The current outbreak has already affected 198 colonies and a rapid response team led by Dr. Greta Aeby (HIMB) has been activated to document the outbreak. Members of the investigative ...

Moderate red wine drinking may help cut women's breast cancer risk, Cedars-Sinai study shows

2012-01-09
LOS ANGELES – Drinking red wine in moderation may reduce one of the risk factors for breast cancer, providing a natural weapon to combat a major cause of death among U.S. women, new research from Cedars-Sinai Medical Center shows. The study, published online in the Journal of Women's Health, challenges the widely-held belief that all types of alcohol consumption heighten the risk of developing breast cancer. Doctors long have determined that alcohol increases the body's estrogen levels, fostering the growth of cancer cells. But the Cedars-Sinai study found that ...

LAST 30 PRESS RELEASES:

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

[Press-News.org] Graphene rips follow rules
Rice University simulations show carbon sheets tear along energetically favorable lines