(Press-News.org) WEST LAFAYETTE, Ind. - The driving bass rhythm of rap music can be harnessed to power a new type of miniature medical sensor designed to be implanted in the body.
Acoustic waves from music, particularly rap, were found to effectively recharge the pressure sensor. Such a device might ultimately help to treat people stricken with aneurisms or incontinence due to paralysis.
The heart of the sensor is a vibrating cantilever, a thin beam attached at one end like a miniature diving board. Music within a certain range of frequencies, from 200-500 hertz, causes the cantilever to vibrate, generating electricity and storing a charge in a capacitor, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.
"The music reaches the correct frequency only at certain times, for example, when there is a strong bass component," he said. "The acoustic energy from the music can pass through body tissue, causing the cantilever to vibrate."
When the frequency falls outside of the proper range, the cantilever stops vibrating, automatically sending the electrical charge to the sensor, which takes a pressure reading and transmits data as radio signals. Because the frequency is continually changing according to the rhythm of a musical composition, the sensor can be induced to repeatedly alternate intervals of storing charge and transmitting data.
"You would only need to do this for a couple of minutes every hour or so to monitor either blood pressure or pressure of urine in the bladder," Ziaie said. "It doesn't take long to do the measurement."
Findings are detailed in a paper to be presented during the IEEE MEMS conference, which will be Jan. 29 to Feb. 2 in Paris. The paper was written by doctoral student Albert Kim, research scientist Teimour Maleki and Ziaie.
"This paper demonstrates the feasibility of the concept," he said.
The device is an example of a microelectromechanical system, or MEMS, and was created in the Birck Nanotechnology Center at the university's Discovery Park. The cantilever beam is made from a ceramic material called lead zirconate titanate, or PZT, which is piezoelectric, meaning it generates electricity when compressed. The sensor is about 2 centimeters long. Researchers tested the device in a water-filled balloon.
A receiver that picks up the data from the sensor could be placed several inches from the patient. Playing tones within a certain frequency range also can be used instead of music.
"But a plain tone is a very annoying sound," Ziaie said. "We thought it would be novel and also more aesthetically pleasing to use music."
Researchers experimented with four types of music: rap, blues, jazz and rock.
"Rap is the best because it contains a lot of low frequency sound, notably the bass," Ziaie said.
The sensor is capable of monitoring pressure in the urinary bladder and in the sack of a blood vessel damaged by an aneurism. Such a technology could be used in a system for treating incontinence in people with paralysis by checking bladder pressure and stimulating the spinal cord to close the sphincter that controls urine flow from the bladder. More immediately, it could be used to diagnose incontinence. The conventional diagnostic method now is to insert a probe with a catheter, which must be in place for several hours while the patient remains at the hospital.
"A wireless implantable device could be inserted and left in place, allowing the patient to go home while the pressure is monitored," Ziaie said.
The new technology offers potential benefits over conventional implantable devices, which either use batteries or receive power through a property called inductance, which uses coils on the device and an external transmitter. Both approaches have downsides. Batteries have to be replaced periodically, and data are difficult to retrieve from devices that use inductance; coils on the implanted device and an external receiver must be lined up precisely, and they can only be about a centimeter apart.
INFORMATION:
A patent application has been filed for the design.
Writer: Emil Venere, 765-494-4709, venere@purdue.edu
Source: Babak Ziaie, 765-494-0725, bziaie@purdue.edu
Related websites:
Babak Ziaie: https://engineering.purdue.edu/ECE/People/profile?resource_id=2839
Birck Nanotechnology Center: http://www.purdue.edu/discoverypark/nanotechnology/
IMAGE CAPTION:
This graphic illustrates the principles behind the operation of a new type of miniature medical sensor powered by acoustic waves, including those found in music such as rap, blues, jazz and rock. The device, a pressure sensor, might ultimately help to treat people stricken with aneurisms or incontinence due to paralysis. (Birck Nanotechnology Center, Purdue University)
A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-music.jpg
PHOTO CAPTION:
Researchers have created a new type of miniature pressure sensor, shown here, designed to be implanted in the body. Acoustic waves from music or plain tones drive a vibrating device called a cantilever, generating a charge to power the sensor. (Birck Nanotechnology Center, Purdue University)
A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-music2.jpg
Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2012/120126ZiaieMusic.html
Note to Journalists: An electronic copy of one of the papers is available from Emil Venere, Purdue News Service, at 765-494-4709, venere@purdue.edu
Rap music powers rhythmic action of medical sensor
2012-01-30
ELSE PRESS RELEASES FROM THIS DATE:
How seawater could corrode nuclear fuel
2012-01-30
Japan used seawater to cool nuclear fuel at the stricken Fukushima-Daiichi nuclear plant after the tsunami in March 2011 -- and that was probably the best action to take at the time, says Professor Alexandra Navrotsky of the University of California, Davis.
But Navrotsky and others have since discovered a new way in which seawater can corrode nuclear fuel, forming uranium compounds that could potentially travel long distances, either in solution or as very small particles. The research team published its work Jan. 23 in the journal Proceedings of the National Academy ...
Believing the impossible and conspiracy theories
2012-01-30
Los Angeles, CA - Distrust and paranoia about government has a long history, and the feeling that there is a conspiracy of elites can lead to suspicion for authorities and the claims they make. For some, the attraction of conspiracy theories is so strong that it leads them to endorse entirely contradictory beliefs, according to a study in the current Social Psychological and Personality Science (published by SAGE).
People who endorse conspiracy theories see authorities as fundamentally deceptive. The conviction that the "official story" is untrue can lead people to believe ...
IRCM researchers fuel an important debate in the field of molecular biology
2012-01-30
Dr. François Robert, molecular biology researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team confirmed that the phosphorylation of RNA polymerase II, a key enzyme in the process of gene expression, is uniform across all genes. This discovery, which contributes to numerous debates on the topic within the scientific community, will be published tomorrow in the scientific journal Molecular Cell.
Phosphorylation, or the addition of phosphate to a molecule, is one of the most important regulation mechanisms for cells. It allows, among other things, ...
URMC finds leukemia cells are 'bad to the bone'
2012-01-30
University of Rochester Medical Center researchers have discovered new links between leukemia cells and cells involved in bone formation, offering a fresh perspective on how the blood cancer progresses and raising the possibility that therapies for bone disorders could help in the treatment of leukemia.
The research, led by graduate student Benjamin J. Frisch in the James P. Wilmot Cancer Center laboratory of corresponding author Laura M. Calvi, M.D., is featured in the journal Blood. It is accompanied by an editorial – "Bad to the Bone" -- written by another leading investigator ...
Notre Dame researchers publish new findings on aging pediatric bruises
2012-01-30
A multi-university research group which includes several University of Notre Dame faculty and graduate students, has recently published a paper detailing new work on the analysis and dating of human bruises. The research, which is funded by the Gerber Foundation, will have particular application to pediatric medicine, as bruise age is often key evidence in child abuse cases.
Using a combination of modeling and spectroscopy measurements, the researchers have advanced our understanding of the changing composition of aging bruises and developed new tools for detailed biomedical ...
Scripps research scientists illuminate cancer cells' survival strategy
2012-01-30
LA JOLLA, CA -- A team led by scientists at The Scripps Research Institute has discovered key elements of a strategy commonly used by tumor cells to survive when they spread to distant organs. The finding could lead to drugs that could inhibit this metastasis in patients with tumors.
A cell that breaks away from the primary tumor and finds itself in the alien environment of the bloodstream or a new organ, normally is destroyed by a process known as apoptosis. But tumor cells that express high levels of a certain surface protein are protected from apoptosis, greatly enhancing ...
Living on the edge: An innovative model of mangrove-hammock boundaries in Florida
2012-01-30
CORAL GABLES, FL. -- The key to understanding how future hurricanes and sea level rise may trigger changes to South Florida's native coastal forests lurks below the surface, according to a new model linking coastal forests to groundwater. Just inland from the familiar mangroves that line the coasts lie hardwood hammocks that are sensitive to salinity changes in water found in the soils.
University of Miami (UM) Ecologist Donald L. DeAngelis, who is also a researcher for the U.S Geological Survey (USGS), has worked with collaborators to develop a novel computer model describing ...
Multiple births lead to weight gain and other problems for mouse moms and male offspring
2012-01-30
Bethesda, Md. -- Women have long bemoaned the fact that as they have more children, their weight gain from pregnancy becomes more difficult to lose. A new study using a mouse model that mimics the human effects of multiparity (giving birth more than once) has found that mouse moms who gave birth four times accrued significantly more fat compared to primiparous females (those giving birth once) of similar age. The study also found significantly more inflammation in the livers of multiparous animals. Multiparity's effect also extended to the male offspring, who showed significant ...
Detecting detrimental change in coral reefs
2012-01-30
Over dinner on R.V. Calypso while anchored on the lee side of Glover's Reef in Belize, Jacques Cousteau told Phil Dustan that he suspected humans were having a negative impact on coral reefs. Dustan—a young ocean ecologist who had worked in the lush coral reefs of the Caribbean and Sinai Peninsula—found this difficult to believe. It was December 1974.
But Cousteau was right. During the following three-plus decades, Dustan, an ocean ecologist and biology professor at the University of Charleston in South Carolina, has witnessed widespread coral reef degradation and bleaching ...
NASA infrared satellite instrument sees tropical storm Iggy growing in strength
2012-01-30
The AIRS infrared instrument that flies on NASA's Aqua satellite has been providing forecasters with the cloud top temperatures in the Southern Indian Ocean's ninth tropical cyclone, which has officially been renamed Iggy. AIRS data showed that the area of strong thunderstorms around Iggy's center has expanded in area over the last day.
The Atmospheric Infrared Sounder (AIRS) instrument provided an infrared snapshot of Iggy's cloud top temperatures on January 26, 2012 at 0611 UTC (1:11 a.m. EST). The AIRS image showed a large and rounded area of high, cold clouds, around ...