PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UGA researchers use nanoparticles, magnetic current to damage cancerous cells in mice

2012-03-27
(Press-News.org) Athens, Ga. – Using nanoparticles and alternating magnetic fields, University of Georgia scientists have found that head and neck cancerous tumor cells in mice can be killed in half an hour without harming healthy cells.

The findings, published recently in the journal Theranostics, mark the first time to the researchers' knowledge this cancer type has been treated using magnetic iron oxide nanoparticle-induced hyperthermia, or above-normal body temperatures, in laboratory mice.

"We show that we can use a small concentration of nanoparticles to kill the cancer cells," said Qun Zhao, lead author and assistant professor of physics in the Franklin College of Arts and Sciences. Researchers found that the treatment easily destroyed the cells of cancerous tumors that were composed entirely of a type of tissue that covers the surface of a body, which is also known as epithelium.

Several researchers around the globe are exploring the use of heated nanoparticles as a potential cancer treatment. Previous studies also have shown that high temperatures created by combining magnetic iron oxide nanoparticles with strong alternating magnetic currents can create enough heat to kill tumor cells. Zhao said he is optimistic about his findings, but explained that future studies will need to include larger animals before a human clinical trial could be considered.

For the experiment, researchers injected a tiny amount—a tenth of a teaspoon, or 0.5 milliliter—of nanoparticle solution directly into the tumor site. With the mouse relaxed under anesthesia, they placed the animal in a plastic tube wrapped with a wire coil that generated magnetic fields that alternated directions 100,000 times each second. The magnetic fields produced by the wire coil heated only the concentrated nanoparticles within the cancerous tumor and left the surrounding healthy cells and tissue unharmed.

Zhao said the study paves the way for additional research that might investigate how to use a biodegradable nanoparticle material similar to magnetic iron oxide for other roles in fighting cancer, such as carrying and delivering anti-cancer drugs to the tumor site.

"When the cancer cell is experiencing this heated environment, then it becomes more susceptible to drugs," Zhao said.

Magnetic iron oxide nanoparticles could be useful in improving the contrast in magnetic resonance imaging at a cancer site, he said. In other words, the nanoparticles could help physicians detect cancer even if the cancer is not visible to the naked eye with an MRI scan.

"The reason I am interested in using these magnetic nanoparticles is because we hope to one day be able to offer diagnosis and therapeutics, or theranostics, using a single agent," Zhao said.

INFORMATION:

The research was supported by a National Cancer Institute Head and Neck Specialized Program of Research Excellence at Emory University.

The paper's additional authors are Luning Wang, Rui Cheng, Leidong Mao, Robert Arnold, Simon Platt and Elizabeth W. Howerth, all of UGA, and Zhuo G. Chen of Emory University.

END



ELSE PRESS RELEASES FROM THIS DATE:

Elder abuse remains hidden problem as baby boomers reach old age

2012-03-27
Despite the 2010 passage of the Elder Justice Act, policy experts have found that combating widespread abuse of seniors is still not a top priority for care providers and governments alike. As many as one in 10 people age 60 and over are affected by this problem, according to the newest Public Policy & Aging Report (PPAR) from the National Academy on an Aging Society, the policy institute of The Gerontological Society of America. U.S. Senator Herb Kohl (D-WI) and U.S. Representative Peter King (R-NY), who have been heavily involved in legislation to address elder abuse, ...

Wind turbines that learn like humans

2012-03-27
Depending on the weather, wind turbines can face whispering breezes or gale-force gusts. Such variable conditions make extracting the maximum power from the turbines a tricky control problem, but a collaboration of Chinese researchers may have found a novel solution in human-inspired learning models. Most turbines are designed to produce maximum allowable power once winds reach a certain speed, called the rated speed. In winds above or below the rated speed, control systems can make changes to the turbine system, such as modifying the angle of the blades or the electromagnetic ...

ORNL process converts polyethylene into carbon fiber

2012-03-27
Common material such as polyethylene used in plastic bags could be turned into something far more valuable through a process being developed at the Department of Energy's Oak Ridge National Laboratory. In a paper published in Advanced Materials, a team led by Amit Naskar of the Materials Science and Technology Division outlined a method that allows not only for production of carbon fiber but also the ability to tailor the final product to specific applications. "Our results represent what we believe will one day provide industry with a flexible technique for producing ...

Writing graphene circuitry with ion 'pens'

2012-03-27
The unique electrical properties of graphene have enticed researchers to envision a future of fast integrated circuits made with the one-carbon-atom-thick sheets, but many challenges remain on the path to commercialization. Scientists from the University of Florida have recently tackled one of these challenges – how to reliably manufacture graphene on a large scale. The team has developed a promising new technique for creating graphene patterns on top of silicon carbide (SiC). SiC comprises both silicon and carbon, but at high temperatures (around 1300 degrees Celcius) ...

Researchers create cellular automation model to study complex tumor-host role in cancer

2012-03-27
Cancer remains a medical mystery – despite all of the research efforts devoted to understanding and controlling it. The most sought-after tumor model is one that would be able to formulate theoretical and computational tools to predict cancer progression and propose individual treatment strategies. To better understand the role complex tumor-host interactions play in tumor growth, Princeton University researchers developed a cellular automation model for tumor growth in heterogeneous microenvironments. They then used this same model to investigate the effects of pressure ...

Photoacoustics technique detects small number of cancer cells

2012-03-27
Researchers have developed multiple techniques and procedures to detect cancer cells during the earliest stages of the disease or after treatment. But one of the major limitations of these technologies is their inability to detect the presence of only a few cancer cells. Now, a research collaboration between the University of Missouri-Columbia and Mexico's Universidad de Guanajuato shows that pulsed photoacoustic techniques, which combine the high optical contrast of optical tomography with the high resolution of ultrasound, can do just that, in vitro. Most cancer cells ...

Using game theory to understand the physics of cancer propagation

2012-03-27
In search of a different perspective on the physics of cancer, Princeton University and University of California, San Francisco researchers teamed up to use game theory to look for simplicity within the complexity of the dynamics of cooperator and cheater cells under metabolic stress conditions and high spatial heterogeneity. In the context of cancer, cooperator cells obey the general rules of communal survival, while cheater cells do not. The ultimate goal of this research was to gain an understanding of the dynamics of cancer tumor evolution under stress. Since cancer ...

Bald Head Design Announces Social Media Service for Dentist. Social Media Marketing Could Save Your Practice Up to 90% In Advertising Costs

2012-03-27
Bald Head Design, Ohio based web design firm is helping dentist improve their communication between patients and their practices through the creation of social media outlets - Facebook and Twitter. By offering a comprehensive social media strategy, which includes not only the creation of these social media tools, but by also providing training and resources providing for a successful social media marketing campaign. Social media allows patients to connect and engage with both the dentists and their staff. With over 500 million users, and growing, Facebook is becoming ...

Androgen suppression

2012-03-27
Androgen suppression – the inhibition of testosterone and other male hormones – is a routine therapy for prostate cancer. Unfortunately, it can dramatically reduce the quality of patients' sex lives and, more importantly, lead to cancer recurrence in a more deadly androgen-independent form. A new paper combining mathematical modeling with clinical data validates a different approach: cycling patients on and off treatment. Such intermittent androgen suppression alleviates most unwanted side effects and postpones the development of resistance to treatment. With the model, ...

Quantum effects and cancer

2012-03-27
The theory of quantum metabolism is the idea that quantum processes, such as entanglement, influence the metabolism of cells. This idea offers scientists a new explanation for the metabolic changes that cause healthy cells to transform into cancerous ones. The metamorphosis gives cancerous cells the ability to outcompete healthy cells for space and nutrients, causing the disease to spread. Understanding the quantum metabolic underpinnings of the transformation could potentially lead to new types of treatment to stop cancer growth, researchers argue. ### Article: "Implications ...

LAST 30 PRESS RELEASES:

Fatty liver in pregnancy may increase risk of preterm birth

World record for lithium-ion conductors

Researchers map 7,000-year-old genetic mutation that protects against HIV

KIST leads next-generation energy storage technology with development of supercapacitor that overcomes limitations

Urine, not water for efficient production of green hydrogen

Chip-scale polydimethylsiloxane acousto-optic phase modulator boosts higher-resolution plasmonic comb spectroscopy

Blood test for many cancers could potentially thwart progression to late stage in up to half of cases

Women non-smokers still around 50% more likely than men to develop COPD

AI tool uses face photos to estimate biological age and predict cancer outcomes

North Korea’s illegal wildlife trade threatens endangered species

Health care workers, firefighters have increased PFAS levels, study finds

Turning light into usable energy

Important step towards improving diagnosis and treatment of brain metastases

Maternal cardiometabolic health during pregnancy associated with higher blood pressure in children, NIH study finds

Mercury levels in the atmosphere have decreased throughout the 21st century

This soft robot “thinks” with its legs

Biologists identify targets for new pancreatic cancer treatments

Simple tweaks to a gene underlie the stench of rotten-smelling flowers

Simple, effective interventions reduce emissions from Bangladesh’s informal brick kilns

Ultrasound-guided 3D bioprinting enables deep-tissue implant fabrication in vivo

Soft limbs of flexible tubes and air enable dynamic, autonomous robotic locomotion

Researchers develop practical solution to reduce emissions and improve air quality from brick manufacturing in Bangladesh

Durham University scientists solve 500-million-year fossil mystery

Red alert for our closest relatives

3D printing in vivo using sound

Global Virus Network meeting unites Caribbean and Latin America to tackle emerging viral threats

MD Anderson Research Highlights for May 8, 2025

Study of Türkiye gold mine landslide highlights need for future monitoring

Researchers find new defense against hard-to-treat plant diseases

Characterization of research grant terminations at the National Institutes of Health

[Press-News.org] UGA researchers use nanoparticles, magnetic current to damage cancerous cells in mice