(Press-News.org) Menlo Park, Calif. — Researchers at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have captured the most detailed images to date of airborne soot particles, a key contributor to global warming and a health hazard.
The discovery reveals the particles' surprisingly complex nanostructures and could ultimately aid the understanding of atmospheric processes important to climate change, as well as the design of cleaner combustion sources, from car engines to power plants.
The study, published in the June 28th issue of Nature, also pioneers a method for studying a broad range of individual particles, such as cells or proteins, and opens up exciting possibilities in the study of aerosol dynamics using highly focused X-ray lasers, such as SLAC's Linac Coherent Light Source (LCLS).
"Our study shows that LCLS can drive a paradigm shift in imaging airborne particles, allowing us to look at them one at a time instead of using a composite of many different particles," said Duane Loh, the lead author of the study and a postdoctoral scholar at SLAC and Stanford University's PULSE Institute for Ultrafast Energy Science. "We now have a richer imaging tool to explore the connections between their toxicity and internal structure."
Soot and similar particles – especially those 2.5 microns or less in diameter, which are the most dangerous to human health – are difficult to image while airborne. When placed on a surface for examination with a microscope, they tend to clump together and lose their shape.
In this experiment, researchers wafted individual soot particles up to 3.25 microns in diameter into the path of the LCLS laser beam. Its laser pulses are so brief that they captured information about the particles, only millionths of a meter across, in the quadrillionths of a second before they blew apart.
They found that no two are alike. Like magnified snowflakes, soot particles exhibit similar patterns of complexity at different scales, which is characteristic of fractals. Other research methods have probed the fractal properties of soot, but the LCLS' ability to examine those of individual soot particles, airborne and in their natural state, revealed surprising diversity and complexity in their fractal dimensions. Such observations can help validate the various models used to describe these soot particles.
The results make scientists wonder what diversity of forms will be discovered if particles produced in real-world, "messy" environments, such as a car's combustion engine or a candle flame, are imaged one at a time. The team is analyzing data from experiments at the LCLS that examined soot from diesel emissions as well as other types of airborne particles.
A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment, said Michael Bogan, a staff scientist at PULSE and leader of the international research team.
"Scientists can now imagine being able to watch the evolution of soot formation in combustion engines from their molecular building blocks, or maybe even view the first steps of ice crystal formation in clouds," he said.
INFORMATION:
The research team included contributors from SLAC, DESY, Lawrence Berkeley National Laboratory, the Max Planck Institutes, the National Energy Research Scientific Computing Center, Lawrence Livermore National Laboratory, Cornell University, the University of Hamburg, Synchrotron Trieste and Uppsala University. LCLS is supported by DOE's Office of Science.
SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
X-ray vision exposes aerosol structures
Laser probes microscopic components of air pollution
2012-06-28
ELSE PRESS RELEASES FROM THIS DATE:
Scientists measure soot particles in flight
2012-06-28
"For the first time we can actually see the structure of individual aerosol particles floating in air, their 'native habitat'," said DESY scientist Henry Chapman from the Center for Free-Electron Laser Science (CFEL) in Hamburg. "This will have important implications for various fields from climate modelling to human health." CFEL is a joint venture of Deutsches Elektronen-Synchrotron DESY, the German Max Planck Society and the University of Hamburg.
Aerosol particles like soot play important roles in a wide range of fields from toxicology to climate science. Despite ...
New way of probing exoplanet atmospheres
2012-06-28
The planet Tau Bootis b [1] was one of the first exoplanets to be discovered back in 1996, and it is still one of the closest exoplanets known. Although its parent star is easily visible with the naked eye, the planet itself certainly is not, and up to now it could only be detected by its gravitational effects on the star. Tau Bootis b is a large "hot Jupiter" planet orbiting very close to its parent star.
Like most exoplanets, this planet does not transit the disc of its star (like the recent transit of Venus). Up to now such transits were essential to allow the study ...
Innovative technique enables scientists to learn more about elusive exoplanet
2012-06-28
One of the first planets discovered outside of the Solar System, Tau Bootis b, has eluded numerous attempts to measure the light coming from its atmosphere and so has remained something of a mystery. Now, for the first time, an international team has used an innovative technique to unravel direct light from the exoplanet itself to reveal its mass and orbit. Their results will be reported in Nature on June 28.
"The problem with exoplanets is that in general we do not know the orientation of their orbit as we see them from Earth," says team member Ernst de Mooij, a postdoctoral ...
New vaccine for nicotine addiction
2012-06-28
NEW YORK (June 27, 2012) -- Researchers at Weill Cornell Medical College have developed and successfully tested in mice an innovative vaccine to treat nicotine addiction.
In the journal Science Translational Medicine, the scientists describe how a single dose of their novel vaccine protects mice, over their lifetime, against nicotine addiction. The vaccine is designed to use the animal's liver as a factory to continuously produce antibodies that gobble up nicotine the moment it enters the bloodstream, preventing the chemical from reaching the brain and even the heart. ...
Stem cells can beat back diabetes: UBC research
2012-06-28
University of British Columbia scientists, in collaboration with an industry partner, have successfully reversed diabetes in mice using stem cells, paving the way for a breakthrough treatment for a disease that affects nearly one in four Canadians.
The research by Timothy Kieffer, a professor in the Department of Cellular and Physiological Sciences, and scientists from the New Jersey-based BetaLogics, a division of Janssen Research & Development, LLC, is the first to show that human stem cell transplants can successfully restore insulin production and reverse diabetes ...
Scripps Research Institute scientists find easier way to make new drug compounds
2012-06-28
LA JOLLA, CA – Scientists at The Scripps Research Institute have developed a powerful new technique for manipulating the building-block molecules of organic chemistry. The technique enables chemists to add new functional molecules to previously hard-to-reach positions on existing compounds—making it easier for them to generate new drugs and other organic chemicals.
"This is a basic tool for making novel chemical compounds, and it should have a wide range of applications," said Jin-Quan Yu, PhD, a professor at Scripps Research and senior author of the new report, published ...
How sticky toepads evolved in geckos and what that means for adhesive technologies
2012-06-28
Geckos are known for sticky toes that allow them to climb up walls and even hang upside down on ceilings. A new study shows that geckos have gained and lost these unique adhesive structures multiple times over the course of their long evolutionary history in response to habitat changes.
"Scientists have long thought that adhesive toepads originated just once in geckos, twice at the most," says University of Minnesota postdoctoral researcher Tony Gamble, a coauthor of the study. "To discover that geckos evolved sticky toepads again and again is amazing."
The findings ...
Scientists identify new cancer stem cell mechanism
2012-06-28
Scientists at Queen Mary, University of London have uncovered a link between two genes which shows how stem cells could develop into cancer.
The research, published in the online journal PLoS ONE, found a novel mechanism which could be the catalyst for stem cells changing into a tumour.
Dr Ahmad Waseem, a reader in oral dentistry at Queen Mary, University of London who led the research, said: "It was quite an unexpected discovery. We set out to investigate the role of the stem cell gene Keratin K15 which was thought to be a biomarker for normal stem cells.
"Through ...
Successful transplant of patient-derived stem cells into mice with muscular dystrophy
2012-06-28
Stem cells from patients with a rare form of muscular dystrophy have been successfully transplanted into mice affected by the same form of dystrophy, according to a new study published today in Science Translational Medicine.
For the first time, scientists have turned muscular dystrophy patients' fibroblast cells (common cells found in connective tissue) into stem cells and then differentiated them into muscle precursor cells. The muscle cells were then genetically modified and transplanted into mice.
The new technique, which was initially developed at the San Raffaele ...
Patient care by residents is as good as by fully qualified doctors
2012-06-28
Medical residents are an essential part of the hospital workforce. Although still in training the take on much of the day to day care of patients. A systematic review published in BioMed Central's open access journal BMC Medicine shows that patient by properly supervised residents care is safe and of equal quality to that of fully trained doctors.
Residency training is an essential part of a doctors education after they leave university. Once completed doctors are expected to provide high quality care and while many studies have looked at different aspects of residency ...
LAST 30 PRESS RELEASES:
Detections of poliovirus in sewage samples require enhanced routine and catch-up vaccination and increased surveillance, according to ECDC report
Scientists unlock ice-repelling secrets of polar bear fur for sustainable anti-freezing solutions
Ear muscle we thought humans didn’t use — except for wiggling our ears — actually activates when people listen hard
COVID-19 pandemic drove significant rise in patients choosing to leave ERs before medically recommended
Burn grasslands to maintain them: What is good for biodiversity?
Ventilation in hospitals could cause viruses to spread further
New study finds high concentrations of plastics in the placentae of infants born prematurely
New robotic surgical systems revolutionizing patient care
New MSK research a step toward off-the-shelf CAR T cell therapy for cancer
UTEP professor wins prestigious research award from American Psychological Association
New national study finds homicide and suicide is the #1 cause of maternal death in the U.S.
Women’s pelvic tissue tears during childbirth unstudied, until now
Earth scientists study Sikkim flood in India to help others prepare for similar disasters
Leveraging data to improve health equity and care
Why you shouldn’t scratch an itchy rash: New study explains
Linking citation and retraction data aids in responsible research evaluation
Antibody treatment prevents severe bird flu in monkeys
Polar bear energetic model reveals drivers of polar bear population decline
Socioeconomic and political stability bolstered wild tiger recovery in India
Scratching an itch promotes antibacterial inflammation
Drivers, causes and impacts of the 2023 Sikkim flood in India
Most engineered human cells created for studying disease
Polar bear population decline the direct result of extended ‘energy deficit’ due to lack of food
Lifecycle Journal launches: A new vision for scholarly publishing
Ancient DNA analyses bring to life the 11,000-year intertwined genomic history of sheep and humans
Climate change increases risk of successive natural hazards in the Himalayas
From bowling balls to hip joints: Chemists create recyclable alternative to durable plastics
Promoting cacao production without sacrificing biodiversity
New £2 million project to save UK from food shortages
SCAI mourns Frank J. Hildner, MD, FSCAI: A founder and leader
[Press-News.org] X-ray vision exposes aerosol structuresLaser probes microscopic components of air pollution