(Press-News.org) Just like populations of human beings, clusters of living cells are made up of individuals possessing unique qualities. Traditional analytic techniques however evaluate cells in tissue aggregates, often overlooking single-cell nuances that can offer valuable clues concerning health and disease.
ASU Senior Scientist and Professor, Deirdre Meldrum, and her colleagues at Arizona State University's Biodesign Institute are pioneering a kind of miniaturized laboratory for the investigation of single cells. Known as the Cellarium, this live cell array technology will enable researchers to investigate the detailed behavior of individual cells—providing unprecedented insights into their role in disease processes.
"Just as an aquarium is for viewing and studying live fish, the 'Cellarium' is for viewing and studying live cells," Meldrum says. "The Cellarium is an innovative, disposable microarray with sensors for dynamic, high-throughput measurements of live single cells. It is capable of multiparameter metabolic measurements of biosignatures induced by perturbation," she explains.
Currently under a $1.5 million grant from the NIH, the Cellarium project is the fruit of over a decade of scientific progress. Much of this work has been carried out with Meldrum's Center for Biosignatures Discovery Automation, a multidisciplinary team Meldrum directs and that has devoted significant resources to the study of single-cell physiology. Other key investigators in the Cellarium project include Drs. Honor Glenn, Mark Holl, Laimonas Kelbauskas, Yanqing Tian, Cody Youngbull, and Mr. Cliff Anderson.
An NIH Center of Excellence in Genomic Sciences known as the Microscale Life Sciences Center at Biodesign, also directed by Meldrum, has created and developed the Cellarium's early generation technology, with the assistance of partners at the University of Washington, Fred Hutchinson Cancer Research Center, and Brandeis University.
The new grant is part of the NIH Common Fund project known as LINCS – Library of Integrated Network-Based Cellular Signatures, which is a library of molecular signatures describing cell behavior in response to a variety of perturbing agents.
The central hypothesis of the LINCS project is that subjecting cells to perturbation can cause changes in the behavior and/or function that result in changes in the observable physical or biochemical characteristics of a cell or cell phenotype. Observing phenotypic cell changes in response to perturbation will help scientists better understand how environmental stresses on cells can cause them to transition to disease states.
While LINCS centers at Harvard Medical School and the Broad Institute are actively gathering molecular information, Meldrum stresses that the Cellarium's keen analytical capability to record dynamic characteristics of individual live cells in real time will provide a unique data set not attainable by any existing method. "We will be adding the dimensions of single-cell physiology and time to the LINCS database," Meldrum says.
The Cellarium array chip permits the study of individual cells in a high throughput format, providing measurement of critical parameters of cell metabolism including oxygen consumption, pH, adenosine triphosphate (ATP), and glucose. Studying the manner in which these and other single-cell variables change with time will help researchers gain insight into life and death processes of cells, such as neoplastic progression (e.g. cancer), and pyroptosis or proinflammatory cell death—implicated in a range of inflammatory diseases as well as heart disease, stroke and cancer.
Meldrum's team received $669, 794 in funding to support the Cellarium project's inaugural year and the current award provides additional funding through August 2013. Over the next 18 months, the team will develop a disposable Cellarium microarray; employ a commercial microarray scanner to read cell parameters; and verify the technology's effectiveness by simultaneously monitoring oxygen, pH, glucose, and ATP responses.
The group will conduct studies involving various kinds of cell perturbation, observing metabolic responses to these interventions and compiling written and graphical procedures to facilitate an understanding of the data. Such stimulus-response experiments could include exposing cells to biochemical agents, an infection, a temporal cue, a drug, or any other type of perturbation.
The Cellarium system can also be applied to a wide range of cell types, including normal, metaplastic, dysplastic, and cancerous cells. While the initial version of the Cellarium will measure oxygen consumption, pH, ATP, and glucose, future work will be aimed at developing new sensors capable of measuring many additional cell parameters.
Providing the proper conditions for the study of individual cells is tricky. The Cellarium relies on environmentally controlled chambers in arrays outfitted with optical sensors capable of being scanned to reveal key parameters over time. To accomplish this, shallow microwells—each with a capacity of about 150 picoliters—will provide protection for the cells under study, which are then sealed in the microwell.
The analytes under consideration can then be studied using extracellular fluorescent sensors capable of multiparameter detection of metabolic processes. The microwells of the Cellarium are each able to hold 1 or more cells, on an array containing thousands of these wells. Once the Cellarium is fully developed by the end of 2012, it should be able to carry out multiparameter dynamic measurements on thousands of cells per run.
Figure 1 outlines the Cellarium process. First, cells are seeded into microwells and incubated under normal culture conditions. (Prior to incubation, various perturbagens may be introduced.) By compressing the aligned sensor array and cell microwell array together, an isolation seal is formed.
Next, using a high-speed scanner, the array is scanned at precise time intervals to establish rates of oxygen consumption, extracellular pH change, and glucose uptake. These values are pertinent to cancer metabolism, normal cell development and a wide array of human pathologies. Ultimately, intracellular fluorescent sensors can be used to augment the range of detectable parameters, including ATP.
Meldrum stresses the importance of heterogeneity within cell populations—the behavior of atypical, aberrant cells often being the most critical for the purposes of accurate disease detection. Such aberrant cells are precisely those that are often averaged out when bulk cell study techniques are used. "With our live single cell technologies and experiments we hope to elucidate key biological pathways that will help us understand cancer and other diseases, and lead us to successful diagnoses for early detection and ultimately improved qualify of life," states Meldrum.
The Cellarium holds the potential for significant improvements in the understanding of single-cell behavior, including the study of tumor formation and the abnormally high rate of glucose-degradation to form ATP (glycosylation) observed in cancer cells—a symptom known as the Warburg effect. The Cellarium could also be a boon to pharmaceutical companies attempting to personalize their therapeutics based on pathogen detection and microbial analysis.
After future refinements, the group plans to commercialize the platform, providing both researchers and clinical diagnosticians with a unique tool for probing single-cell dynamics.
INFORMATION:
Deirdre Meldrum, Ph.D., is ASU Senior Scientist, Director of the Biosignature Initiative and Director of the Center for Biosignatures Discovery Automation (CBDA) in the Biodesign Institute and Professor of Electrical Engineering in the School of Electrical, Computer, and Energy Engineering. She is also the Director of the NIH Center of Excellence in Genomic Sciences (CEGS) Microscale Life Sciences Center (MLSC).
Richard Harth,
Richard.Harth@asu.edu
The Biodesign Institute
Breakthrough technology focuses in on disease traits of single cells
2012-07-25
ELSE PRESS RELEASES FROM THIS DATE:
UC Berkeley survey shows college campuses can make good bird havens
2012-07-25
The bird population on the University of California, Berkeley, campus has remained surprisingly diverse over the past 100 years, showing that it's possible to create a green wildlife haven within a dense urban area, researchers say.
The good news comes from a survey conducted over a six-month period covering the winter of 2006-07, newly published in the May 2012 issue of the journal The Condor. The study, conducted during the non-breeding season, identified 48 separate bird species in an 84-acre portion of the 178-acre central campus. That's a greater number of species ...
Study shows economic feasibility for capturing carbon dioxide directly from the air
2012-07-25
With a series of papers published in chemistry and chemical engineering journals, researchers from the Georgia Institute of Technology have advanced the case for extracting carbon dioxide directly from the air using newly-developed adsorbent materials.
The technique might initially be used to supply carbon dioxide for such industrial applications as fuel production from algae or enhanced oil recovery. But the method could later be used to supplement the capture of CO2 from power plant flue gases as part of efforts to reduce concentrations of the atmospheric warming chemical. ...
SEARCH study shows 1-year drop in HIV virus levels in rural Ugandan parish after campaign
2012-07-25
Population-wide levels of HIV virus dropped substantially between 2011 and May 2012 in a rural part of southwestern Uganda, the site of two community health campaigns led by doctors at the University of California, San Francisco (UCSF), San Francisco General Hospital and Trauma Center (SFGH) and Makerere University in Kampala, Uganda.
The campaign, which was part of the Sustainable East Africa Research in Community Health (SEARCH) Collaboration, involved free counseling, testing for HIV and other diseases, linkage to care and treatment. This comprehensive approach to ...
Greater availability of neurosurgeons could reduce risk of death from motor vehicle accidents
2012-07-25
Charlottesville, VA (July 24, 2012). Researchers at Dartmouth-Hitchcock Medical Center in Lebanon, New Hampshire have found an association between increasing the distribution of neurosurgeons throughout the United States and decreasing the risk of death from motor vehicle accidents (MVAs). The findings of their study are described in the article "Increased population density of neurosurgeons associated with decreased risk of death from MVAs in the United States. Clinical article," by Atman Desai, M.D., and colleagues, published today online, ahead of print, in the Journal ...
Some harmful effects of light at night can be reversed
2012-07-25
COLUMBUS, Ohio -- Chronic exposure to dim light at night can lead to depressive symptoms in rodents -- but these negative effects can be reversed simply by returning to a standard light-dark cycle, a new study suggests.
While hamsters exposed to light at night for four weeks showed evidence of depressive symptoms, those symptoms essentially disappeared after about two weeks if they returned to normal lighting conditions.
Even changes in the brain that occurred after hamsters lived with chronic light at night reversed themselves after returning to a more normal light ...
A quarter of our very elderly have undiagnosed treatable heart problems, research reveals
2012-07-25
The very oldest in our society are missing out on simple heart treatments which can prolong and improve their quality of life, Newcastle heart experts say.
Studying a group of people aged 87 to 89 years old, the team of researchers at Newcastle University found that a routine test in the home revealed that around a quarter of them had undiagnosed heart problems which could be treated with established and cost-effective treatments.
In the study, funded by the British Heart Foundation (BHF), the team visited the homes of 376 people aged 87 to 89 years old and carried ...
Physicists study the classics for hidden truths
2012-07-25
The truth behind some of the world's most famous historical myths, including Homer's epic, the Iliad, has been bolstered by two researchers who have analysed the relationships between the myths' characters and compared them to real-life social networks.
In a study published online today, 25 July, in the journal EPL (Europhysics Letters), Pádraig Mac Carron and Ralph Kenna from Coventry University performed detailed text analyses of the Iliad, the English poem, Beowulf, and the Irish epic, the Táin Bó Cuailnge.
They found that the interactions between the characters ...
Lace plants explain programmed cell death
2012-07-25
Programmed cell death (PCD) is a highly regulated process that occurs in all animals and plants as part of normal development and in response to the environment. New research published in BioMed Central's open access journal BMC Plant Biology is the first to document the physiological events in the lace plant (Aponogeton madagascariensis) which occur via PCD to produce the characteristic holes in its leaves.
The aquatic lace plant, endemic to Madagascar, uses PCD to generate holes in its leaves. Researchers from Dalhousie University, Nova Scotia, used long-term live ...
Use of sunbeds leads to 3000+ cases of melanoma a year in Europe and 'tougher actions' are needed
2012-07-25
Of 63,942 new cases of cutaneous melanoma (a form of skin cancer) diagnosed each year in Europe an estimated 3,438 (5.4%) are related to sunbed use. Sunbed users are at a 20% increased relative risk of skin cancer compared with those who have never used a sunbed. This risk doubles if they start before the age of 35 and experts warn that "tougher actions" are needed to reduce this risk.
Sun exposure is the most significant environmental cause of skin cancer and sunbeds have become the main non-solar source of UV exposure in Western Europe (UV is the wavelength associated ...
Concerns over accuracy of tools to predict risk of repeat offending
2012-07-25
Research: Use of risk assessment instruments to predict violence and antisocial behaviour in 73 samples involving 24,827 people: systematic review and meta-analysis
Tools designed to predict an individual's risk of repeat offending are not sufficient on their own to inform sentencing and release or discharge decisions, concludes a study published on bmj.com today.
Although they appear to identify low risk individuals with high levels of accuracy, the authors say "their use as sole determinants of detention, sentencing, and release is not supported by the current evidence."
Risk ...