(Press-News.org) CAMBRIDGE, Mass. -- It's a longstanding question in biology: How do cells know when to progress through the cell cycle?
In simple organisms such as yeast, cells divide once they reach a specific size. However, determining if this holds true for mammalian cells has been difficult, in part because there has been no good way to measure mammalian cell growth over time.
Now, a team of MIT and Harvard Medical School (HMS) researchers has precisely measured the growth rates of single cells, allowing them to answer that fundamental question. In the Aug. 5 online edition of Nature Methods, the researchers report that mammalian cells divide not when they reach a critical size, but when their growth rate hits a specific threshold.
This first-ever observation of this threshold was made possible by a technique developed by MIT professor Scott Manalis and his students in 2007 to measure the mass of single cells. In the new study, Manalis and his colleagues were able to track cell growth and relate it to the timing of cell division by measuring cells' mass every 60 seconds throughout their lifespans.
The finding offers a possible explanation for how cells determine when to start dividing, says Sungmin Son, a grad student in Manalis' lab and lead author of the paper. "It's easier for cells to measure their growth rate, because they can do that by measuring how fast something in the cell is produced or degraded, whereas measuring size precisely is hard for cells," Son says.
Manalis, a professor of biological engineering and member of the David H. Koch Institute for Integrative Cancer Research at MIT, is senior author of the paper. Other authors are former MIT grad student Yaochung Weng; Amit Tzur, a former research fellow at HMS; Paul Jorgensen, a former HMS postdoc; Jisoo Kim, a former undergraduate student at MIT; and Marc Kirschner, a professor of systems biology at HMS.
Tracking cells over time
Manalis' original cell-weighing system, known as a suspended microchannel resonator, pumps cells (in fluid) through a microchannel that runs across a tiny silicon cantilever. That cantilever vibrates within a vacuum. When a cell flows through the channel, the frequency of the cantilever's vibration changes, and the cell's buoyant mass can be calculated from that change in frequency.
For the new study, the researchers redesigned their system so that they could trap cells over a much longer period of time. The original system offered limited control over the motion of cells in the channel; cells could be lost or become unviable due to accrued shear stress from frequent passages through the microchannel. Consequently, growth could be monitored for less than 30 minutes.
To avoid this problem, the researchers developed a way to precisely control the flow in the system so that a cell could be stopped anywhere in the bypass channel. They also configured the flow to constantly replenish nutrients and remove waste. Now a cell passes through only every 60 seconds and remains viable for several generations.
The new system also measures fluorescent signals from a cell in addition to its mass. Cells are programmed to express fluorescent proteins at various points in the cell cycle, allowing the researchers to link cell cycle information to growth.
A cell devotes itself to growth in a phase called G1. A critical transition occurs when the cell enters the S phase, during which DNA is replicated in preparation for division. The researchers found that growth rate increases rapidly during the G1 phase. This rate varies a great deal from cell to cell during G1, but converges as cells approach the S phase. Once cells complete the transition into S phase, growth rates diverge again.
Building on the feature of the new system that precisely controls the environmental conditions inside the channel, researchers can also change the conditions very rapidly, allowing them to monitor how cells respond to such disturbances.
"We are now measuring the cell's response on short timescales to various perturbations, such as depleting a particular nutrient or adding a drug," Manalis says. "We believe this could offer new types of information that could not be obtained from conventional proliferation assays."
INFORMATION: END
Genetic variability revealed in malaria genomes newly sequenced by two multi-national research teams points to new challenges in efforts to eradicate the parasite, but also offers a clearer and more detailed picture of its genetic composition, providing an initial roadmap in the development of pharmaceuticals and vaccines to combat malaria.
The research appears in two studies published in the latest issue of the journal Nature Genetics. They focus on Plasmodium vivax (P. vivax), a species of malaria that afflicts humans and the most prevalent human malaria parasite outside ...
SEATTLE – Developing resistance to chemotherapy is a nearly universal, ultimately lethal consequence for cancer patients with solid tumors – such as those of the breast, prostate, lung and colon – that have metastasized, or spread, throughout the body. A team of scientists led by Fred Hutchinson Cancer Research Center has discovered a key factor that drives this drug resistance – information that ultimately may be used to improve the effectiveness of therapy and buy precious time for patients with advanced cancer. They describe their findings online Aug. 5 in advance of ...
Researchers have found that a bacterium that emerged centuries ago in Europe has now been spreading globally into countries undergoing rapid development and industrialization. Unlike other diarrheal diseases, this one is unlikely to be resolved by providing access to clean water. As developing countries become more industrialized the numbers of infections with dysentery-causing Shigella flexneri are known to decline, associated with improved health, lifestyle and perhaps most importantly access to clean water, but the incidence of another form of the dysentery-causing bacterium, ...
An international study to understand and predict the likely impact of ocean acidification on shellfish and other marine organisms living in seas from the tropics to the poles is published this week (date) in the journal Global Change Biology.
Ocean acidification is occurring because some of the increased carbon dioxide humans are adding to the atmosphere dissolves in the ocean and reacts with water to produce an acid.
The results suggest that increased acidity is affecting the size and weight of shells and skeletons, and the trend is widespread across marine species. ...
VIDEO:
Stem-cell derived heart muscle cells were genetically labeled with fluorescent calcium to flash when they contract. By correlating this optical signal from the graft cells with an electrocardiogram --...
Click here for more information.
Researchers have made a major advance in efforts to regenerate damaged hearts.
Grafts of human cardiac muscle cells, grown from embryonic stem cells, coupled electrically and contracted synchronously with host muscle following transplantation ...
Plants produce toxins to defend themselves against potential enemies, from herbivorous pests to diseases. Oilseed rape plants produce glucosinolates to serve this purpose. However, due to the content of glucosinolates, farmers can only use limited quantities of the protein-rich rapeseed for pig and chicken feed. Now, a team of researchers from the University of Copenhagen has developed a method to hinder unwanted toxins from entering the edible parts of the plant. The breakthrough was published today in the prominent scientific journal Nature.
"We have developed an entirely ...
Leaky pipes are a common problem for the water industry: according to UK regulator, Ofwat, between 20 and 40 per cent of the UK's total water supply can be lost through damaged pipes. Developing more accurate ways of finding leaks would enable water companies to save revenue and reduce their environmental impact.
The system invented at Sheffield tests pipes by transmitting a pressure wave along them that sends back a signal if it passes any unexpected features, such as a leak or a crack in the pipe's surface.
The pressure wave is generated by a valve fitted to an ordinary ...
Philadelphia, PA, August 6, 2012 – Individuals with mutations in BRCA1 and BRCA2 genes have a significantly higher risk of developing breast and ovarian cancers. Families at risk have been seeking genetic testing and counseling based on their mutation carrier status, but the standard method of direct sequencing is labor-intensive, costly, and it only targets a part of the BRCA1 and BRCA2 genes. A group of Canadian scientists has developed a new sequencing approach to provide a more effective method of BRCA1/2 mutational analysis. Their work is published in the September ...
ITHACA, N.Y. — There is a popular belief that sexual orientation can be revealed by pupil dilation to attractive people, yet until now there was no scientific evidence. For the first time, researchers at Cornell University used a specialized infrared lens to measure pupillary changes to participants watching erotic videos. Pupils were highly telling: they widened most to videos of people who participants found attractive, thereby revealing where they were on the sexual spectrum from heterosexual to homosexual.
The findings were published August 3 in the scientific journal ...
Book reading is one of the best-known habit humankind has ever known. With the increasing popularity of online books, e-book reading apps have become a rage among book lovers. The rising accessibility to free e-content has prompted every individual to read more books.
According to a research conducted by a famous research center, one in five Americans has read an e-book in the past one year. Keeping this in mind, FreeForAllBooks has launched its unique application that enables its users to download free e-books that are easily available on the famous e-commerce website ...