PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

1-molecule-thick material has big advantages

MIT researchers produce complex electronic circuits from molybdenum disulfide, a material that could have many more applications

2012-08-23
(Press-News.org) CAMBRIDGE, MA -- The discovery of graphene, a material just one atom thick and possessing exceptional strength and other novel properties, started an avalanche of research around its use for everything from electronics to optics to structural materials. But new research suggests that was just the beginning: A whole family of two-dimensional materials may open up even broader possibilities for applications that could change many aspects of modern life.

The latest "new" material, molybdenum disulfide (MoS2) — which has actually been used for decades, but not in its 2-D form — was first described just a year ago by researchers in Switzerland. But in that year, researchers at MIT — who struggled for several years to build electronic circuits out of graphene with very limited results (except for radio-frequency applications) — have already succeeded in making a variety of electronic components from MoS2. They say the material could help usher in radically new products, from whole walls that glow to clothing with embedded electronics to glasses with built-in display screens.

A report on the production of complex electronic circuits from the new material was published online this month in the journal Nano Letters; the paper is authored by Han Wang and Lili Yu, graduate students in the Department of Electrical Engineering and Computer Science (EECS); Tomás Palacios, the Emmanuel E. Landsman Associate Professor of EECS; and others at MIT and elsewhere.

Palacios says he thinks graphene and MoS2 are just the beginning of a new realm of research on two-dimensional materials. "It's the most exciting time for electronics in the last 20 or 30 years," he says. "It's opening up the door to a completely new domain of electronic materials and devices."

Like graphene, itself a 2-D form of graphite, molybdenum disulfide has been used for many years as an industrial lubricant. But it had never been seen as a 2-D platform for electronic devices until last year, when scientists at the Swiss university EPFL produced a transistor on the material.

MIT researchers quickly swung into action: Yi-Hsien Lee, a postdoc in associate professor Jing Kong's group in EECS, found a good way to make large sheets of the material using a chemical vapor deposition process. Lee came up with this method while working with Lain-Jong Li at Academia Sinica in Taiwan and improved it after coming to MIT. Palacios, Wang and Yu then set to producing building blocks of electronic circuits on the sheets made by Lee, as well as on MoS2 flakes produced by a mechanical method, which were used for the work described in the new paper.

Wang had been struggling to build circuits on graphene for his doctoral thesis research, but found it much easier to do with the new material. There was a "hefty bottleneck" to making progress with graphene, he explains, because that material lacks a bandgap — the key property that makes it possible to create transistors, the basic component of logic and memory circuits. While graphene needs to be modified in exacting ways in order to create a bandgap, MoS2 just naturally comes with one.

The lack of a bandgap, Wang explains, means that with a switch made of graphene, "you can turn it on, but you can't turn it off. That means you can't do digital logic." So people have for years been searching for a material that shares some of graphene's extraordinary properties, but also has this missing quality — as molybdenum disulfide does.

Because it already is widely produced as a lubricant, and thanks to ongoing work at MIT and other labs on making it into large sheets, scaling up production of the material for practical uses should be much easier than with other new materials, Wang and Palacios say.

Wang and Palacios were able to fabricate a variety of basic electronic devices on the material: an inverter, which switches an input voltage to its opposite; a NAND gate, a basic logic element that can be combined to carry out almost any kind of logic operation; a memory device, one of the key components of all computational devices; and a more complex circuit called a ring oscillator, made up of 12 interconnected transistors, which can produce a precisely tuned wave output.

Palacios says one potential application of the new material is large-screen displays such as television sets and computer monitors, where a separate transistor controls each pixel of the display. Because the material is just one molecule thick — unlike the highly purified silicon that is used for conventional transistors and must be millions of atoms thick — even a very large display would use only an infinitesimal quantity of the raw materials. This could potentially reduce cost and weight and improve energy efficiency.

In the future, it could also enable entirely new kinds of devices. The material could be used, in combination with other 2-D materials, to make light-emitting devices. Instead of producing a point source of light from one bulb, an entire wall could be made to glow, producing softer, less glaring light. Similarly, the antenna and other circuitry of a cellphone might be woven into fabric, providing a much more sensitive antenna that needs less power and could be incorporated into clothing, Palacios says.

The material is so thin that it's completely transparent, and it can be deposited on virtually any other material. For example, MoS2 could be applied to glass, producing displays built into a pair of eyeglasses or the window of a house or office.

###In addition to Palacios, Kong, Wang, Yu and Lee, the work was carried out by graduate student Allen Hsu and MIT affiliate Yumeng Shi, with U.S. Army Research Laboratory researchers Matthew Chin and Madan Dubey, and Lain-Jong Li of Academia Sinica in Taiwan. The work was funded by the U.S. Office of Naval Research, the Microelectronics Advanced Research Corporation Focus Center for Materials, the National Science Foundation and the Army Research Laboratory.

Written by David Chandler, MIT News Office


ELSE PRESS RELEASES FROM THIS DATE:

Is this real or just fantasy? ONR Augmented-Reality Initiative progresses

2012-08-23
ARLINGTON, Va.—The Office of Naval Research (ONR) is demonstrating the next phase of an augmented-reality project Aug. 23 in Princeton, N.J., that will change the way warfighters view operational environments—literally. ONR has completed the first year of a multi-year augmented-reality effort, developing a system that allow trainees to view simulated images superimposed on real-world landscapes. One example of augmented reality technology can be seen in sports broadcasts, which use it to highlight first-down lines on football fields and animate hockey pucks to help TV ...

Spacetime: A smoother brew than we knew

2012-08-23
Spacetime may be less like beer and more like sipping whiskey. Or so an intergalactic photo finish may suggest. Physicist Robert Nemiroff of Michigan Technological University reached this heady conclusion after studying the tracings of three photons of differing wavelengths that were recorded by NASA's Fermi Gamma-ray Space Telescope in May 2009. The photons originated about 7 billion light years away from Earth in one of three pulses from a gamma-ray burst. They arrived at the orbiting telescope just one millisecond apart, in a virtual tie. Gamma-ray bursts are ...

Novel microscopy method offers sharper view of brain's neural network

Novel microscopy method offers sharper view of brains neural network
2012-08-23
WASHINGTON, Aug. 23—Shortly after the Hubble Space Telescope went into orbit in 1990 it was discovered that the craft had blurred vision. Fortunately, Space Shuttle astronauts were able to remedy the problem a few years later with supplemental optics. Now, a team of Italian researchers has performed a similar sight-correcting feat for a microscope imaging technique designed to explore a universe seemingly as vast as Hubble's but at the opposite end of the size spectrum—the neural pathways of the brain. "Our system combines the best feature of one microscopy technique—high-speed, ...

How to feed data-hungry mobile devices? Use more antennas

2012-08-23
Researchers from Rice University today unveiled a new multi-antenna technology that could help wireless providers keep pace with the voracious demands of data-hungry smartphones and tablets. The technology aims to dramatically increase network capacity by allowing cell towers to simultaneously beam signals to more than a dozen customers on the same frequency. Details about the new technology, dubbed Argos, were presented today at the Association for Computing Machinery's MobiCom 2012 wireless research conference in Istanbul. Argos is under development by researchers from ...

Vanderbilt-led study reveals racial disparities in prostate cancer care

2012-08-23
A study led by investigators from Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tenn., finds that black men with prostate cancer receive lower quality surgical care than white men. The racial differences persist even when controlling for factors such as the year of surgery, age, comorbidities and insurance status. Daniel Barocas, M.D., MPH, assistant professor of Urologic Surgery, is first author of the study published in the Aug. 17 issue of the Journal of Urology. Investigators from VICC, the Tennessee Valley Veterans Administration Geriatric Research, Education ...

Sensor detects glucose in saliva and tears for diabetes testing

Sensor detects glucose in saliva and tears for diabetes testing
2012-08-23
WEST LAFAYETTE, Ind. – Researchers have created a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine and might be manufactured at low cost because it does not require many processing steps to produce. "It's an inherently non-invasive way to estimate glucose content in the body," said Jonathan Claussen, a former Purdue doctoral student and now a research scientist at the U.S. Naval Research Laboratory. "Because it can detect glucose in the saliva and tears, it's a platform that might eventually help to eliminate or reduce ...

Field guide to the Epstein-Barr virus charts viral paths toward cancer

Field guide to the Epstein-Barr virus charts viral paths toward cancer
2012-08-23
Researchers from The Wistar Institute and Memorial Sloan-Kettering Cancer Center (MSKCC) have teamed to publish the first annotated atlas of the Epstein-Barr virus genome, creating the most comprehensive study of how the viral genome interacts with its human host during a latent infection. Epstein-Barr virus (EBV), which is thought to be responsible for one percent of all human cancers, establishes a latent infection in nearly 100 percent of infected adult humans. The atlas is designed to guide researchers toward new means of creating therapies against EBV-latent infection ...

For mitochondria, bigger may not be better

2012-08-23
Goldilocks was on to something when she preferred everything "just right." Harvard Medical School researchers have found that when it comes to the length of mitochondria, the power-producing organelles, applying the fairy tale's mantra is crucial to the health of a cell. More specifically, abnormalities in mitochondrial length promote the development of neurodegenerative diseases such as Alzheimer's. "There had been a fair amount of interest in mitochondria in Alzheimer's and tau-related diseases, but causality was unknown," said Brian DuBoff, first author of the study ...

August 2012 tips from the journals of the American Society for Microbiology

2012-08-23
Boost for Efforts to Prevent Microbial Stowaways on Interplanetary Spacecraft Efforts to expunge micro-organisms from spacecraft assembly cleanrooms, and the spacecraft themselves, inadvertently select for the organisms that are often the most fit to survive long journeys in space. This has the risk of thwarting the goal of avoiding contaminating other celestial bodies, as well as samples brought back to earth, according to Myron La Duc of the Jet Propulsion Laboratory (JPL), California Institute of Technology, and his collaborators. Their research is published in the ...

Cancer survival in Germany after the fall of the Iron Curtain

2012-08-23
Data from the 1970s and 1980s show that people affected by cancer survived significantly longer in West Germany than cancer patients behind the Iron Curtain. Looking at a diagnosis period from 1984 to 1985 in the former German Democratic Republic, 28 percent of colorectal cancer patients, 46 percent of prostate cancer patients, and 52 percent of breast cancer patients survived the first five years after diagnosis. By contrast, 5-year survival rates for people in West Germany affected by these types of cancer were 44 percent, 68 percent, and 68 percent in the years from ...

LAST 30 PRESS RELEASES:

Quantum machine offers peek into “dance” of cosmic bubbles

How hungry fat cells could someday starve cancer to death

Breakthrough in childhood brain cancer research could heal treatment-resistant tumors, keep them in remission

Research discovery halts childhood brain tumor before it forms

Scientists want to throw a wrench in the gears of cancer’s growth

WSU researcher pioneers new study model with clues to anti-aging

EU awards €5 grant to 18 international researchers in critical raw materials, the “21st century's gold”

FRONTIERS launches dedicated call for early-career science journalists

Why do plants transport energy so efficiently and quickly?

AI boosts employee work experiences

Neurogenetics leader decodes trauma's imprint on the brain through groundbreaking PTSD research

High PM2.5 levels in Delhi-NCR largely independent of Punjab-Haryana crop fires

Discovery of water droplet freezing steps bridges atmospheric science, climate solutions

Positive emotions plus deep sleep equals longer-lasting perceptual memories

Self-assembling cerebral blood vessels: A breakthrough in Alzheimer’s treatment

Adverse childhood experiences in firstborns associated with poor mental health of siblings

Montana State scientists publish new research on ancient life found in Yellowstone hot springs

Generative AI bias poses risk to democratic values

Study examines how African farmers are adapting to mountain climate change

Exposure to air pollution associated with more hospital admissions for lower respiratory infections

Microscopy approach offers new way to study cancer therapeutics at single-cell level

How flooding soybeans in early reproductive stages impacts yield, seed composition

Gene therapy may be “one shot stop” for rare bone disease

Protection for small-scale producers and the environment?

Researchers solve a fluid mechanics mystery

New grant funds first-of-its-kind gene therapy to treat aggressive brain cancer

HHS external communications pause prevents critical updates on current public health threats

New ACP guideline on migraine prevention shows no clinically important advantages for newer, expensive medications

Revolutionary lubricant prevents friction at high temperatures

Do women talk more than men? It might depend on their age

[Press-News.org] 1-molecule-thick material has big advantages
MIT researchers produce complex electronic circuits from molybdenum disulfide, a material that could have many more applications