PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

SMU geothermal mapping project reveals large, green energy source in coal country

West Virginia is capable of producing 75 percent more energy from geothermal heat than currently produced by the state's mostly coal-fired power plants

SMU geothermal mapping project reveals large, green energy source in coal country
2010-10-06
(Press-News.org) DALLAS (SMU) – New research produced by Southern Methodist University's Geothermal Laboratory, funded by a grant from Google.org, suggests that the temperature of the Earth beneath the state of West Virginia is significantly higher than previously estimated and capable of supporting commercial baseload geothermal energy production.

Geothermal energy is the use of the Earth's heat to produce heat and electricity. "Geothermal is an extremely reliable form of energy, and it generates power 24/7, which makes it a baseload source like coal or nuclear," said David Blackwell, Hamilton Professor of Geophysics and Director of the SMU Geothermal Laboratory.

The SMU Geothermal Laboratory has increased its estimate of West Virginia's geothermal generation potential to 18,890 megawatts (assuming a conservative two percent thermal recovery rate). The new estimate represents a 75 percent increase over estimates in MIT's 2006 "The Future of Geothermal Energy" report and exceeds the state's total current generating capacity, primarily coal based, of 16,350 megawatts.

Researchers from SMU's Geothermal Laboratory will present a detailed report on the discovery at the 2010 Geothermal Resources Council annual meeting in Sacramento, Oct. 24-27. A summary of the report is available at http://smu.edu/smunews/geothermal/documents/west-virginia-temperatures.asp

The West Virginia discovery is the result of new detailed mapping and interpretation of temperature data derived from oil, gas, and thermal gradient wells – part of an ongoing project to update the Geothermal Map of North America that Blackwell produced with colleague Maria Richards in 2004. Temperatures below the Earth almost always increase with depth, but the rate of increase (the thermal gradient) varies due to factors such as the thermal properties of the rock formations.

"By adding 1,455 new thermal data points from oil, gas, and water wells to our geologic model of West Virginia, we've discovered significantly more heat than previously thought," Blackwell said. "The existing oil and gas fields in West Virginia provide a geological guide that could help reduce uncertainties associated with geothermal exploration and also present an opportunity for co-producing geothermal electricity from hot waste fluids generated by existing oil and gas wells."

The high temperature zones beneath West Virginia revealed by the new mapping are concentrated in the eastern portion of the state (Figure 1). Starting at depths of 4.5 km (greater than 15,000 feet), temperatures reach over 150°C (300°F), which is hot enough for commercial geothermal power production.

Traditionally, commercial geothermal energy production has depended on high temperatures in existing subsurface reservoirs to produce electricity, requiring unique geological conditions found almost exclusively in tectonically active regions of the world, such as the western United States. Newer technologies and drilling methods can be used to develop resources in wider ranges of geologic conditions. Three non-conventional geothermal resources that can be developed in areas with little or no tectonic activity or volcanism such as West Virginia are:

Low‐Temperature Hydrothermal – Energy is produced from areas with naturally occurring high fluid volumes at temperatures ranging from 80°C (165°F) to 150°C (300°F) using advanced binary cycle technology. Low-Temperature systems have been developed in Alaska, Oregon, and Utah. Geopressure and Co-produced Fluids Geothermal – Oil and/or natural gas produced together with hot geothermal fluids drawn from the same well. Geopressure and Co-produced Fluids systems are currently operating or under development in Wyoming, North Dakota, Utah, Louisiana, Mississippi, and Texas. Enhanced Geothermal Systems (EGS) – Areas with low natural rock permeability but high temperatures of more than 150°C (300°F) are "enhanced" by injecting fluid and other reservoir engineering techniques. EGS resources are typically deeper than hydrothermal and represent the largest share of total geothermal resources. EGS is being pursued globally in Germany, Australia, France, the United Kingdom, and the U.S. EGS is being tested in deep sedimentary basins similar to West Virginia's in Germany and Australia.

"The early West Virginia research is very promising," Blackwell said, "but we still need more information about local geological conditions to refine estimates of the magnitude, distribution, and commercial significance of their geothermal resource."

Zachary Frone, an SMU graduate student researching the area said, "More detailed research on subsurface characteristics like depth, fluids, structure and rock properties will help determine the best methods for harnessing geothermal energy in West Virginia." The next step in evaluating the resource will be to locate specific target sites for focused investigations to validate the information used to calculate the geothermal energy potential in this study.

The team's work may also shed light on other similar geothermal resources. "We now know that two zones of Appalachian age structures are hot – West Virginia and a large zone covering the intersection of Texas, Arkansas, and Louisiana known as the Ouachita Mountain region," said Blackwell. "Right now we don't have the data to fill in the area in between," Blackwell continued, "but it's possible we could see similar results over an even larger area."

Blackwell thinks the finding opens exciting possibilities for the region. "The proximity of West Virginia's large geothermal resource to east coast population centers has the potential to enhance U.S. energy security, reduce CO2 emissions, and develop high paying clean energy jobs in West Virginia," he said.

SMU's Geothermal Laboratory conducted this research through funding provided by a Google.org's initiative dedicated to using the power of information and innovation to advance breakthrough technologies in clean energy.



INFORMATION:

SMU is a private university in Dallas. Nearly 11,000 students benefit from the national opportunities and international reach of SMU's seven degree-granting schools.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with SMU's geothermal team or to book a live or taped interview in the studio, call SMU News & Communications at 214-768-7650 or email news@smu.edu.

[Attachments] See images for this press release:
SMU geothermal mapping project reveals large, green energy source in coal country

ELSE PRESS RELEASES FROM THIS DATE:

Sediment pollution should be included in water quality assessment

2010-10-06
Under the Water Framework Directive (WFD) (Directive 2000/60/CE), member states are required to achieve Good Water Status for water (continental, estuarine, subterranean and coastal water bodies) in Europe by 2015. Surface water quality is assessed taking into account the ecological and chemical status. The quality of aquatic systems is more accurately assessed using the status of both the water column and the underlying sediment. A recent study by researchers of AZTI-Tecnalia concluded that water bodies risk being misclassified if, on evaluating their chemical status, ...

New graphene fabrication method uses silicon carbide templates to create desired growth

2010-10-06
Researchers at the Georgia Institute of Technology have developed a new "templated growth" technique for fabricating nanometer-scale graphene devices. The method addresses what had been a significant obstacle to the use of this promising material in future generations of high-performance electronic devices. The technique involves etching patterns into the silicon carbide surfaces on which epitaxial graphene is grown. The patterns serve as templates directing the growth of graphene structures, allowing the formation of nanoribbons of specific widths without the use of ...

New findings about wind farms could lead to expanding their use

2010-10-06
CHAMPAIGN, Ill. — Wind power is likely to play a large role in the future of sustainable, clean energy, but wide-scale adoption has remained elusive. Now, researchers have found wind farms' effects on local temperatures and proposed strategies for mediating those effects, increasing the potential to expand wind farms to a utility-scale energy resource. Led by University of Illinois professor of atmospheric sciences Somnath Baidya Roy, the research team will publish its findings in the Proceedings of the National Academy of Sciences. The paper will appear in the journal's ...

The world is full of darkness, reflected in the physiology of the human retina, Penn researchers say

The world is full of darkness, reflected in the physiology of the human retina, Penn researchers say
2010-10-06
PHILADELPHIA –- Physicists and neuroscientists from the University of Pennsylvania have linked the cell structure of the retina to the light and dark contrasts of the natural world, demonstrating the likelihood that the neural pathways humans use for seeing are adapted to best capture the world around us. Researchers found that retinal ganglion cells that see darkness are more numerous and cluster closer together than those that see light, corresponding to the fact that the natural world contains more dark spots than light. Now physicists, and not just pessimists, ...

Georgia Tech researchers design system to trace call paths across multiple networks

2010-10-06
Phishing scams are making the leap from email to the world's voice systems, and a team of researchers in the Georgia Tech College of Computing has found a way to tag fraudulent calls with a digital "fingerprint" that will help separate legitimate calls from phone scams. Voice phishing (or "vishing") has become much more prevalent with the advent of cellular and voice IP (VoIP) networks, which enable criminals both to route calls through multiple networks to avoid detection and to fake caller ID information. However each network through which a call is routed leaves its ...

Researcher finds top reasons for Facebook unfriending

2010-10-06
DENVER (October 5, 2010) - With over 500 million users worldwide, Facebook has become a global phenomenon, a vast cyber neighborhood where friends meet to share photos, news and gossip. But when those relationships sour, another phenomenon often occurs – unfriending. In what may be the first comprehensive study of its kind, a University of Colorado Denver Business School student has revealed the top reasons for Facebook unfriending, who is unfriended and how they react to being unfriended. "Researchers spend a lot of time examining how people form friendships online ...

A tracking device that fits on the head of a pin

2010-10-06
Optical gyroscopes, also known as rotation sensors, are widely used as a navigational tool in vehicles from ships to airplanes, measuring the rotation rates of a vehicle on three axes to evaluate its exact position and orientation. Prof. Koby Scheuer of Tel Aviv University's School of Physical Engineering is now scaling down this crucial sensing technology for use in smartphones, medical equipment and more futuristic technologies. Working in collaboration with Israel's Department of Defense, Prof. Scheuer and his team of researchers have developed nano-sized optical gyroscopes ...

Better cholesterol drugs may follow Saint Louis University researcher's breakthrough

2010-10-06
ST. LOUIS – Thanks to a discovery by a Saint Louis University researcher, scientists have identified an important microRNA that may allow us to better control cholesterol levels in blood. Led by Ángel Baldán, Ph.D., assistant professor of biochemistry and molecular biology at Saint Louis University and published in a recent issue of Proceedings of the National Academy of Sciences of the United States of America, the study found that the microRNA miR-33, may be key to controlling HDL, or "good" cholesterol levels. In the U.S., heart attack, stroke, and peripheral ...

October 2010 issue of the Bulletin of the Seismological Society of America

2010-10-06
Causal relationship between rainfall and earthquakes detailed This review article explores natural crustal earthquakes associated with the elements of the hydrologic cycle, which describes the continuous movement of water on, above and below the surface of the Earth, including hurricanes and typhoons. The theory of hydroseismicity, first articulated in 1987, attributes most intraplate and near-intraplate earthquakes, to the dynamics of the hydrological cycle. The Hydroseismicity hypothesis suggests variations in rainfall affect pore-fluid pressure at depth and can ...

Sociologists find lowest-paid women suffer most from motherhood penalty

2010-10-06
WASHINGTON, DC, October 5, 2010 — In a study of earnings inequality among white women, researchers at the University of Massachusetts Amherst find that having children reduces women's earnings, even among workers with comparable qualifications, experience, work hours and jobs. While women at all income levels suffer negative earnings consequences from having children, the lowest-paid women lose the most from motherhood. This earnings penalty ranges from 15 percent per child among low-wage workers to about 4 percent among the highly paid. The findings are published in the ...

LAST 30 PRESS RELEASES:

Preventing dangerous short circuits in lithium batteries

Successful bone regeneration using stem cells derived from fatty tissue

ELSI to host first PCST Symposium in Japan, advancing science communication across Asia

Researchers improve marine aerosol remote sensing accuracy using multiangular polarimetry

Alzheimer’s Disease can hijack communication between brain and fat tissue, potentially worsening cardiovascular and metabolic health

New memristor wafer integration technology from DGIST paves the way for brain-like AI chips

Bioinspired dual-phase nanopesticide enables smart controlled release

Scientists reveal it is possible to beam up quantum signals

Asymmetric stress engineering of dense dislocations in brittle superconductors for strong vortex pinning

Shared synaptic mechanism for Alzheimer's and Parkinson’s disease unlocks new treatment possibilities

Plasma strategy boosts antibacterial efficacy of silica-based materials

High‑performance wide‑temperature zinc‑ion batteries with K+/C3N4 co‑intercalated ammonium vanadate cathodes

Prioritized Na+ adsorption‑driven cationic electrostatic repulsion enables highly reversible zinc anodes at low temperatures

Engineered membraneless organelles boost bioproduction in corynebacterium glutamicum

Study finds moral costs in over-pricing for essentials

Australian scientists uncover secrets of yellow fever

Researchers develop high-performance biochar for efficient carbon dioxide capture

Biodegradable cesium nanosalts activate anti-tumor immunity via inducing pyroptosis and intervening in metabolism

Can bamboo help solve the plastic pollution crisis?

Voting behaviour in elections strongly linked to future risk of death

Significant variations in survival times of early onset dementia by clinical subtype

Research finds higher rare risk of heart complications in children after COVID-19 infection than after vaccination

Oxford researchers develop ‘brain-free’ robots that move in sync, powered entirely by air

The science behind people who never forget a face

Study paints detailed picture of forest canopy damage caused by ‘heat dome’

New effort launched to support earlier diagnosis, treatment of aortic stenosis

Registration and Abstract Submission Open for “20 Years of iPSC Discovery: A Celebration and Vision for the Future,” 20-22 October 2026, Kyoto, Japan

Half-billion-year-old parasite still threatens shellfish

Engineering a clearer view of bone healing

Detecting heart issues in breast cancer survivors

[Press-News.org] SMU geothermal mapping project reveals large, green energy source in coal country
West Virginia is capable of producing 75 percent more energy from geothermal heat than currently produced by the state's mostly coal-fired power plants