(Press-News.org) If quantum computers are ever going to perform all those expected feats of code-breaking and number crunching, then their component qubits---tiny ephemeral quantum cells held in a superposition of internal states---will have to be protected from intervention by the outside world. In other words, decoherence, the loss of the qubits' quantum integrity, has to be postponed. Now theoretical physicists at the Joint Quantum Institute (JQI) and the University of Maryland have done an important step forward to understand qubits in a real-world setup. In a new study they show, for the first time, that qubits can successfully exist in a so called topological superconductor material even in the presence of impurities in the material and strong interactions among participating electrons.
To see how qubits can enter into their special coherence-protection program, courtesy of "Majorana particles," an exotic form of excitation, some groundwork has to be laid.
QUANTUM MATERIALS
Most designs for qubits involve materials where quantum effects are important. In one such material, superconductors (SC), electrons pair up and can then enter into a large ensemble, a supercurrent, which flows through the material without suffering energy loss. Another material is a sandwich of semiconductors which support the quantum Hall effect (QHE). Here, very low temperatures and a powerful external magnetic field force electrons in a thin boundary layer to execute tiny cyclone motions (not exactly, but ok—also isn't a cyclone a storm?). At the edge of these layers, the electrons, unable to trace out a complete circular path, will creep along the edge, where they constitute a net electrical current.
One of the most interesting and useful facts about these electrons at the edge is that they move in one direction. They cannot scatter backwards no matter how many impurities (which in ordinary conductors can lead to energy dissipation) may be in the material. If, furthermore, the electrons can be oriented according to their spin---their intrinsic angular momentum---then we get what is called the quantum spin Hall effect (QSH). In this case all electrons with spin up will circulate around the material (at the edge) in one direction, while electrons with spin down will circulate around in the opposite direction.
The QHE state is depicted in figure 1.
TOPOLOGICAL MATERIALS
In some materials the underlying magnetism of the nuclei in the atoms making of the material is so strong than no external magnet is needed to create the Hall effects. Mercury-cadmium-telluride compounds are examples of materials called topological insulators. Insulators (not sure how this sentence was supposed to start, but grammatically is currently confusing) because even as electrons move around the edge of the material with very little loss of energy, the interior of these 3-dimensional structures is an insulator; no current flows. The "topological" is a bit harder to explain. Partly the flow of current on the outside bespeaks of geometry: the electrons flow only at the edge and are unable (owing to quantum interactions) from scattering backwards if they meet an impediment.
But topology in this case has more to do with the way in which the motion of the electrons in these materials are described in terms of "dispersion relations." Just as waves of white light will be dispersed into a spectrum of colors when the waves strike the oblique side of a prism, so electron waves (electrons considered as quantum waves) will be "dispersed," in the sense that electrons with the same energy might have different momenta, depending on how the electrons move through the material in question.
The idea of electron dispersal is often depicted in the form of an energy-level diagram. In insulators (the left panel of Figure 2) electrons remain in a valence band; they don't have enough energy to visit the conduction band of energies; hence the electrons do not move; the material is an insulator against electricity. In a conductor (middle part) the conduction and valence bands overlap. In the QHE (right panel) electrons in the interior of the material also do not move along; the bulk of the material is an insulator. But for electrons at the edge there is a chance for movement into the conduction band.
Now for the topology: just as a coffee cup is equivalent to a donut topologically---either can be transformed into the other by stretching but not by any tearing---so here the valence band can be transformed into a conduction band (at least for edge states) no matter what impurities might be present in the underlying material. In other words, the "topological" nature of the material offers some protection for the flow of electrons against the otherwise-dissipating effects of impurities.
The marvelous properties of superconductors and topological materials can be combined. If a one-dimensional topological specimen---a nanowire made from indium and arsenic---is draped across a superconductor (niobium, say) then the superconductivity can extend into the wire (proximity effect). And in this conjunction of materials, still another hotly-pursued effect can come into play.
MAJORANA PARTICLES
One last concept is needed here---Majorana particles---named for the Italian physicist Ettore Majorana, who predicted in 1937 the existence of a class of particle that would serve as its own antiparticle. Probably this object would not exist usefully in the form of a single real particle but would, rather, appear in a material as a quasiparticle, an ensemble excitation of many electrons.
Some scientists believe that qubits made from Majorana pulses excited in topological materials (and benefitting from the same sort of topological protection that benefits, say, electrons in QHE materials) would be much more immune from decoherence than other qubits based on conventional particles.
Specifically Sankar Das Sarma and his colleagues at the University of Maryland (JQI and the Condensed Matter Theory Center) predicted that Majorana particles would appear in topological quantum nanowires. In fact part of the Majorana excitation would appear at both ends of the wire. These predictions were borne out. It is precisely the separation of these two parts (each of which constitutes a sort of "half electron") that confers some of the anticipated coherence-protection: a qubit made of that Majorana excitation would not be disrupted by merely a local irregularity in the wire.
A recent experiment in Holland provides preliminary evidence for exactly this occurrence (***).
ROBUST QUBITS AMID DISORDER
One of the authors of the new study, Alejandro Lobos, said that the earlier Maryland prediction, useful as it was, was still somewhat idealistic in that it didn't fully grapple with the presence of impurities, a fact of life which all engineers of actual computers must confront. This is what the new paper, which appears in the journal Physical Review Letters, addresses.
The problem of impurities or defects (which flowing electrons encounter as a form of disorder) is especially important for components which are two or even one dimensional in nature. The same is true for the repulsive force among electrons. "In 3-dimensional materials," said Lobos, "electrons (and their screening clouds of surrounding holes) can avoid each other thanks to the availability of space. They can just go around each other. In 1-D materials, this is not possible, since electrons cannot pass each other. In 1D, if one electron wants to move, it has to move all the other electrons! This ensures that excitations in a 1D metal are necessarily collective, as opposed to the single-particle excitations existing in a 3D metal.
So, in summary, the new Maryland work shows that disorder and electron interactions, two things that normally work to disrupt superconductivity, can be overcome with careful engineering of the material.
"A number of important theoretical studies before ours have focused on the destabilizing effects of either disorder or interaction on topological superconductors," said Lobos. "These studies showed the extent to which a topological superconductor could survive under these effects separately. But to make contact with real materials, disorder and interactions have to be considered on equal footing and simultaneously, a particular requirement imposed by the one-dimensional geometry of the system. It was then an important question to determine if it was possible to stabilize a topological superconductor under their simultaneous presence. The good news is that the answer is yes: despite their detrimental effect, there is still a sizable range of parameters where topological superconductors hosting Majorana excitations can exist. That's the main result of our study, which will be useful to understand and characterize topological superconductors in more realistic situations."
INFORMATION:
(*) The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.
(**) "Interplay of disorder and interaction in Majorana quantum wires," Alejandro M. Lobos, Roman M. Lutchyn, and S. Das Sarma, Physical Review Letters, 5 October 2012, http://prl.aps.org/abstract/PRL/v109/i14/e146403
(***) Link to earlier Majorana JQI press release and several pertinent research papers: http://www.jqi.umd.edu/news/314-finding-majorana-update.html
Alejandro M. Lobos, (301)405-0603, alobos@umd.edu
Press contact: Phillip F. Schewe, pschewe@umd.edu, 301-405-0989. http://jqi.umd.edu/
Topological superconductors
Seeking a robust home for qubits
2012-10-09
ELSE PRESS RELEASES FROM THIS DATE:
Bioenergy - The broken promise
2012-10-09
Biofuels are going to save us from climate threats and the oil crisis, while at the same time providing an opportunity to the smallholder farmers of the world. Hopes are high, but completely unrealistic. It is like trying to push a square peg into a round hole, according to a current thesis at Linköping University.
Bioenergy could replace fossil fuels and solve the looming energy crisis. Into the bargain, we will benefit from reduced greenhouse gas emissions. A further bonus could be that demand for biofuels gives a lift to smallholder farmers in poor countries, who would ...
Doubling up on advanced prostate cancer with PARP inhibitors
2012-10-09
A newly discovered function of PARP-1 could be the key to more effective therapeutics to treat advanced prostate cancer patients, a recent preclinical study published in Cancer Discovery by Jefferson's Kimmel Cancer Center researchers suggests.
The team, led by Karen E. Knudsen, Ph.D., Professor in the Departments of Cancer Biology, Urology, & Radiation Oncology at Thomas Jefferson University, found that functions of PARP-1 not only include DNA damage repair but also androgen receptor (AR) regulation in advanced prostate cancer growth and progression. PARP inhibition ...
Chronic kidney disease alters intestinal microbial flora, UCI study finds
2012-10-09
Irvine, Calif., Oct. 9, 2012 – Chronic kidney disease changes the composition of intestinal bacterial microbes that normally play a crucial role in staving off disease-causing pathogens and maintaining micronutrient balance, according to UC Irvine researchers.
This profound alteration of the gut microbial population may contribute to the production of uremic toxins, systemic and local inflammation, and nutritional abnormalities present in patients with advanced renal disease, they said.
Study leader Dr. N.D. Vaziri of the UCI School of Medicine's Division of Nephrology ...
Drawing a line, with carbon nanotubes
2012-10-09
CAMBRIDGE, Mass. -- Carbon nanotubes offer a powerful new way to detect harmful gases in the environment. However, the methods typically used to build carbon nanotube sensors are hazardous and not suited for large-scale production.
A new fabrication method created by MIT chemists — as simple as drawing a line on a sheet of paper — may overcome that obstacle. MIT postdoc Katherine Mirica has designed a new type of pencil lead in which graphite is replaced with a compressed powder of carbon nanotubes. The lead, which can be used with a regular mechanical pencil, can inscribe ...
Academic achievement improved among students active in structured after-school programs
2012-10-09
School-age children who participate in structured after-school activities improve their academic achievement, according to a new study from Southern Methodist University, Dallas.
The study by researchers in SMU's Simmons School of Education and Human Development measured academic performance of students enrolled in Boys and Girls Clubs of Greater Dallas.
"Boys and Girls Clubs of Greater Dallas and other structured programs are really having a positive impact," said Ken Springer, an associate professor. "We believe that the homework support that the clubs consistently ...
How cancer cells break free from tumors
2012-10-09
CAMBRIDGE, MA -- Although tumor metastasis causes about 90 percent of cancer deaths, the exact mechanism that allows cancer cells to spread from one part of the body to another is not well understood. One key question is how tumor cells detach from the structural elements that normally hold tissues in place, then reattach themselves in a new site.
A new study from MIT cancer researchers reveals some of the cellular adhesion molecules that are critical to this process. The findings, published Oct. 9 in Nature Communications, offer potential new cancer drug targets, says ...
Online attitudes predict individuals' compulsive and excessive Internet use and poor well-being
2012-10-09
Among the most popular questions addressed in online communication research is the extent to which Internet use leads to undesirable psychosocial outcomes such as depression and loneliness. Evidence suggests that certain motivations to communicate online can have negative consequences, as the Internet itself can, for some, serve as an object of compulsive use. Individuals' compulsive Internet use (CIU) refers to their inability to control, reduce, or stop their online behavior, while excessive Internet use (EIU) is the degree to which an individual feels that he or she ...
Preterm labor powerhouse therapy offers promise for inflammatory diseases
2012-10-09
Magnesium sulfate is given to many pregnant women to treat preterm labor and preeclampsia and was recently shown to prevent cerebral palsy; however little is known about how it works. Researchers at Case Western Reserve University School of Medicine recently discovered the mechanism by which magnesium reduces the production of cytokines. Cytokines are molecules responsible for regulating inflammation; they play a key role conditions, such as diabetes, obesity, atherosclerosis, asthma, and alcoholic liver disease and cirrhosis. Although the study related to pregnancy, inflammation ...
Rearing technique may bolster biocontrol wasp's commercial prospects
2012-10-09
This press release is available in Spanish. Two to three millimeters long, the parasitoid wasp Habrobracon hebetor is a top candidate for use in programs to biologically control Indianmeal moths and other stored-product pests. But despite the prospects for reduced insecticide use and product losses, the approach has yet to gain traction commercially, in part because of the lack of an efficient method of stockpiling the wasp.
But a team of scientists, including researchers from the U.S. Department of Agriculture (USDA), is working on the problem.
Through studies of an ...
Animal models developed by researchers at IDIBELL and ICO can revolutionize the study of cancer
2012-10-09
Some animal models developed by researchers at the Institute of Biomedical Research of Bellvitge (IDIBELL) and the Catalan Institute of Oncology (ICO) has served to validate the effectiveness of a new drug against ovarian cancer resistant to cisplatin. The multidisciplinary work, done in collaboration with the biopharmaceutical company Pharmamar, was published in the journal Clinical Cancer Research.
The human tumor tissue is implanted in the same nude mouse organ from which it came. This type of implant, called orthotopic, can reproduce the histological, genetic and ...
LAST 30 PRESS RELEASES:
Apply for the Davie Postdoctoral Fellowship in Artificial Intelligence for Astronomy
New study finds students' attitudes towards computer science impacts final grades
Clot-buster meds & mechanical retrieval equally reduce disability from some strokes
ISHLT relaunches Global IMACS Registry to advance MCS therapy and patient outcomes
Childhood trauma may increase the risk of endometriosis
Black, Hispanic kids less likely to get migraine diagnosis in ER
Global social media engagement trends revealed for election year of 2024
Zoom fatigue is linked to dissatisfaction with one’s facial appearance
Students around the world find ChatGPT useful, but also express concerns
Labor market immigrants moving to Germany are less likely to make their first choice of residence in regions where xenophobic attitudes, measured by right-wing party support and xenophobic violence, a
Lots of screentime in toddlers is linked with worse language skills, but educational content and screen use accompanied by adults might help, per study across 19 Latin American countries
The early roots of carnival? Research reveals evidence of seasonal celebrations in pre-colonial Brazil
Meteorite discovery challenges long-held theories on Earth’s missing elements
Clean air policies having unintended impact driving up wetland methane emissions by up to 34 million tonnes
Scientists simulate asteroid collision effects on climate and plants
The Wistar Institute scientists discover new weapon to fight treatment-resistant melanoma
Fool yourself: People unknowingly cheat on tasks to feel smarter, healthier
Rapid increase in early-onset type 2 diabetes in China highlights urgent public health challenges
Researchers discover the brain cells that tell you to stop eating
Salt substitution and recurrent stroke and death
Firearm type and number of people killed in publicly targeted fatal mass shooting events
Recent drug overdose mortality decline compared with pre–COVID-19 trend
University of Cincinnati experts present research at International Stroke Conference 2025
Physicists measure a key aspect of superconductivity in “magic-angle” graphene
Study in India shows kids use different math skills at work vs. school
Quantum algorithm distributed across multiple processors for the first time – paving the way to quantum supercomputers
Why antibiotics can fail even against non-resistant bacteria
Missing link in Indo-European languages' history found
Cancer vaccine shows promise for patients with stage III and IV kidney cancer
Only seven out of 100 people worldwide receive effective treatment for their mental health or substance-use disorders
[Press-News.org] Topological superconductorsSeeking a robust home for qubits