(Press-News.org) Researchers at Washington University School of Medicine in St. Louis have found a key difference in the brains of people with Alzheimer's disease and those who are cognitively normal but still have brain plaques that characterize this type of dementia.
"There is a very interesting group of people whose thinking and memory are normal, even late in life, yet their brains are full of amyloid beta plaques that appear to be identical to what's seen in Alzheimer's disease," says David L. Brody, MD, PhD, associate professor of neurology. "How this can occur is a tantalizing clinical question. It makes it clear that we don't understand exactly what causes dementia."
Hard plaques made of a protein called amyloid beta are always present in the brain of a person diagnosed with Alzheimer's disease, according to Brody. But the simple presence of plaques does not always result in impaired thinking and memory. In other words, the plaques are necessary – but not sufficient – to cause Alzheimer's dementia.
The new study, available online in Annals of Neurology, still implicates amyloid beta in causing Alzheimer's dementia, but not necessarily in the form of plaques. Instead, smaller molecules of amyloid beta dissolved in the brain fluid appear more closely correlated with whether a person develops symptoms of dementia. Called amyloid beta "oligomers," they contain more than a single molecule of amyloid beta but not so many that they form a plaque.
Oligomers floating in brain fluid have long been suspected to have a role in Alzheimer's disease. But they are difficult to measure. Most methods only detect their presence or absence, or very large quantities. Brody and his colleagues developed a sensitive method to count even small numbers of oligomers in brain fluid and used it to compare amounts in their samples.
The researchers examined samples of brain tissue and fluid from 33 deceased elderly subjects (ages 74 to 107). Ten subjects were normal – no plaques and no dementia. Fourteen had plaques, but no dementia. And nine had a diagnosis of Alzheimer's disease – both plaques and dementia.
They found that cognitively normal patients with plaques and Alzheimer's patients both had the same amount of plaque, but the Alzheimer's patients had much higher oligomer levels.
But even oligomer levels did not completely distinguish the two groups. For example, some people with plaques but without dementia still had oligomers, even in similar quantity to some patients with Alzheimer's disease. Where the two groups differed completely, according to Brody and his colleagues, was the ratio of oligomers to plaques. They measured more oligomers per plaque in patients with dementia, and fewer oligomers per plaque in the samples from cognitively normal people.
In people with plaques but no dementia, Brody speculates that the plaques could serve as a buffer, binding with free oligomers and keeping them tied down. And in dementia, perhaps the plaques have exceeded their capacity to capture the oligomers, leaving them free to float in the brain's fluid, where they can damage or interfere with neurons.
Brody cautions that, due to the difficulty in getting samples, oligomer levels have never been measured in living people. Therefore, it's possible these floating clumps of amyloid beta only form after death. Even so, he says, there is still a clear difference between the two groups.
"The plaques and oligomers appear to be in some kind of equilibrium," Brody says. "What happens to shift the relationship between the oligomers and plaques? Like much Alzheimer's research, this study raises more questions than it answers. But it's an important next piece of the puzzle."
### Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL. Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. Annals of Neurology. Accepted Article, Online Sept. 1, 2012.
This study was supported by the National Institutes of Health (NIH), a Burroughs Wellcome Career Award in the Biomedical Sciences, the Thrasher Research Fund, the National Institute on Aging, the Charles F. and Joanne Knight Alzheimer's Disease Research Center at Washington University, the Cure Alzheimer's Fund, and the NIH Neuroscience Blueprint Core Grant to Washington University. Grant numbers: NIH R01 NS065069, NIH K08 NS049237, NIH AG13956, NIH AG029524, NIH K-23-AG03094601, NIH R-01-NS065667, NIH P50-AG05681, NIH P30 NS057105, and NIH P01-AG03991. Human brain and CSF samples were provided by the Washington University Knight Alzheimer's Disease Research Center.
Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.
Clue to cause of Alzheimer's dementia found in brain samples
2012-10-22
ELSE PRESS RELEASES FROM THIS DATE:
State-of-the-art beams from table-top accelerators
2012-10-22
Focusing in on beam focus
The rapidly evolving technology of laser plasma accelerators (LPAs) – called "table-top accelerators" because their length can be measured in centimeters instead of kilometers – promises a new breed of machines, far less expensive and with far less impact on the land and the environment than today's conventional accelerators.
Future LPAs offer not only compact high-energy colliders for fundamental physics but diminutive light sources as well. These will probe chemical reactions, from artificial photosynthesis to "green catalysis"; unique biological ...
Scattered X-rays reveal diseased tissue
2012-10-22
This press release is available in German.
Chronic obstructive pulmonary disease (COPD) is considered the fourth most common cause of death in the United States. Usually the precursor to this life-threatening lung disease is a chronic bronchitis. Partially destroyed alveoli and an over-inflation of the lungs, known as emphysema, are serious side effects. However, the subtle differences in the tissue are barely discernable in standard X-ray images.
In addition to the conventional X-ray images, the Munich scientists analyzed the radiation scattered by the tissue. ...
Fewer patient deaths after surgery in hospitals known for good nursing care
2012-10-22
Patients treated in magnet hospitals (specially designated for their nursing excellence) had 14 percent lower odds of death than those in non-magnet hospitals in a four-state study of 564 hospitals led by the University of Pennsylvania School of Nursing. The magnet designation, determined by the American Nurses Credentialing Center, recognizes high-quality patient care, high levels of nurse education, and nursing innovation.
"Even controlling for differences in nursing, hospital, and patient characteristics, surgical patients fared better in magnet hospitals," said lead ...
Energy-sensing switch discovery could have broad implications for Biology & Medicine
2012-10-22
LA JOLLA, CA – October 21, 2012 – Biochemists at The Scripps Research Institute (TSRI) have discovered a genetic sequence that can alter its host gene's activity in response to cellular energy levels. The scientists have found this particular energy-sensing switch in bacterial genes, which could make it a target for a powerful new class of antibiotics. If similar energy-sensing switches are also identified for human genes, they may be useful for treating metabolism-related disorders such as type 2 diabetes and heart disease.
"This discovery adds a new dimension to our ...
How a fish broke a law of physics
2012-10-22
Reflective surfaces polarize light, a phenomenon that fishermen or photographers overcome by using polarizing sunglasses or polarizing filters to cut our reflective glare. However, PhD student Tom Jordan from the Bristol Centre for Complexity Sciences and his supervisors Professor Julian Partridge and Dr Nicholas Roberts in Bristol's School of Biological Sciences found that these silvery fish have overcome this basic law of reflection – an adaptation that may help them evade predators.
Previously, it was thought that the fish's skin – which contains "multilayer" arrangements ...
A Mississippi river diversion helped build Louisiana wetlands, Penn geologists find
2012-10-22
PHILADELPHIA — The extensive system of levees along the Mississippi River has done much to prevent devastating floods in riverside communities. But the levees have also contributed to the loss of Louisiana's wetlands. By holding in floodwaters, they prevent sediment from flowing into the watershed and rebuilding marshes, which are compacting under their own weight and losing ground to sea-level rise.
Reporting in Nature Geoscience, a team of University of Pennsylvania geologists and others used the Mississippi River flood of the spring of 2011 to observe how floodwaters ...
Improving effectiveness of solar geoengineering
2012-10-22
Washington, D.C.— Solar radiation management is a type of geoengineering that would manipulate the climate in order to reduce the impact of global warming caused by greenhouse gasses. Ideas include increasing the amount of aerosols in the stratosphere, which could scatter incoming solar light away from Earth's surface, or creating low-altitude marine clouds to reflect these same rays.
Research models have indicated that the climatic effect of this type of geoengineering will vary by region, because the climate systems respond differently to the reflecting substances ...
Intermediate glucose control may be better than tight in neurocritical care patients
2012-10-22
A new study in BioMed Central's open access journal Critical Care suggests that intensive glycemic control does not reduce mortality in neurocritical care patients and could, in fact, lead to more neurological damage. Complicating the picture, poor glucose control also leads to worse recovery and should be avoided. This study suggests that a strategy to maintain intermediate glucose levels would contribute to better outcomes in these patients.
Hyperglycemia and hypoglycemia are common in critically ill patients and are strongly associated with worse outcomes. This is ...
Danish researchers release ground-breaking knowledge about calcium pumps in cells
2012-10-22
When animals and plants are exposed to influences such as bacterial attack, odour and cold, calcium ions flow into the cells. The calcium provides the cells with a signal about what is going on outside, but as high concentrations of calcium are toxic to the cells, it must be quickly pumped out again. Researchers from the Danish National Research Foundation's PUMPkin Centre at both the University of Copenhagen and Aarhus University have now shown that calcium pumps in the cell's outer membrane adjust the pump speed very accurately to the calcium concentration. These findings ...
Researchers discover turbo switch of calcium pump in biological cells
2012-10-22
This press release is available in German.
A Danish-British research team has discovered a turbo switch in the vital calcium pump in our body's cells. In studies at the X-ray source DORIS at Deutsches Elektronen-Synchrotorn DESY in Hamburg and the European Synchrotron Radiation Facility ESRF in Grenoble the team discovered that the on-off switch of the pump has a previously unknown third position, which switches the pump into a turbo gear.
The group of Henning Tidow from Aarhus University and Lisbeth Poulsen from the University of Copenhagen published its studies ...